Browse > Article
http://dx.doi.org/10.5423/RPD.2013.19.1.012

Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria  

Chon, Bong-Goan (Department of Environmental Horticulture, The University of Seoul)
Park, Suji (Department of Environmental Horticulture, The University of Seoul)
Kim, Jin-Won (Department of Environmental Horticulture, The University of Seoul)
Publication Information
Research in Plant Disease / v.19, no.1, 2013 , pp. 12-20 More about this Journal
Abstract
To isolate antagonistic bacteria against sclerotinia rot of lettuce, caused by Sclerotinia sclerotiorum, soil samples were collected from the diseased greenhouse field in Namyangju city, Gyeong-gi province from 2007 to 2008. A total of 196 bacterial isolates were isolated using serial dilution method. In dual culture assay in vitro, 26 isolates showed more than 80% of inhibition rates of mycelial growth of S. sclerotiorum. Based on 16S rDNA sequence analysis, the 26 isolates were identified as Bacillus megaterium, B. cereus, B. subtilis, Arthrobacter nicotianae, A. ramosus, Pseudomonas filiscindens, Stenotrophomonas maltophilia, Brevibacterium frigoritolerans and Sphingobacterium faecium. The 26 isolates inhibited the mycelial growth of S. sclerotiorum up to 80% and the sclerotial germination 0-100%. In the greenhouse pot test of ten isolates conducted in summer, 2 isolates B. megaterium (DK6) and B. cereus (C210) showed control efficacy on sclerotia viability of S. sclerotiorum, 20% and 35%, respectively. In the greenhouse pot test in winter, the disease incidence of the control group was 80%, whereas those of 9 isolates among 26 were approximately 20%. From the result, the 9 isolates are expected as potentially antagonistic bacteria for biological control of sclerotinia rot of lettuce caused by S. sclerotiorum.
Keywords
Antagonistic bacteria; Biological control; Lettuce; Sclerotinia rot; Sclerotinia sclerotiorum;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Stabb, E. V., Jacobson, L. M. and Handelsman, J. 1994. Zwittermicin A-producing strains of Bacillus cereus from diverse soil. Appl. Environ. Microbiol. 60: 4404-4412.
2 Subbarao, K. V. 1998. Progress toward integrated management of lettuce drop. Plant Dis. 82: 1068-1078.   DOI   ScienceOn
3 Whipps, J. M., Budge, S. P., McClement, S. and Pink, D. A. C. 2002. A glasshouse cropping method for screening lettuce lines for resistance to Sclerotinia sclerotiorum. Eur. J. Plant Pathol. 108: 373-378.   DOI   ScienceOn
4 Zheng, X. Y. and Sinclair, J. B. 2000. The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl 45: 223-243.   DOI   ScienceOn
5 Handelsman, J., Raffel, S., Mester, E. H., Wunderlich, L. and Grau, C. R. 1990. Biological control of damping-off of alfalfa seedling with Bacillus cereus UW85. Appl. Environ. Microbiol. 56: 713-718.
6 Hwang, J. Y., Shim, C. K., Ryu, K. Y., Choi, D. H. and Jee, H. J. 2006. Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as biological control agents against sclerotinia rot of lettuce. Res. Plant Dis. 12: 254-259. (In Korean)   과학기술학회마을   DOI   ScienceOn
7 Jukes, T. and Cantor, C. 1969. Evolution of protein molecules in HN Munro, ed. Mammalian protein metabolism. Academic Press, New York, pp. 21-132.
8 Kim, H. W., Lee, K. Y., Baek, J. W., Kim, H. J., Park, J. Y., Lee, J. W., Jung, S. J. and Moon, B. J. 2004. Isolationj and identification of antagonistic bacterium active against Sclerotinia sclerotiorum causing sclerotinia rot on crisphead lettuce. Res. Plant Dis. 12: 254-259. (In Korean)
9 Kim, K. C. 1976. The effect of ray on sclerotia formation of sclerotium disease. Korean J. Plant Protect. 15: 223-243. (In Korean)
10 Kim, W. G. and Cho, W. D. 2002. Occurrence of Sclerotinia rot on composite vegetable crops and the causal Sclerotinia spp. Mycobiology 30: 41-46.   DOI   ScienceOn
11 Morrissey, R. F., Dungan, E. P. and Koth, J. S. 1976. Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biol. Biochem. 8: 23-28.   DOI   ScienceOn
12 Purdy, L. H. 1979. Sclerotinia sclerotiorum : History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69: 875-880.   DOI
13 Omar, I., O'Neill, T. M. and Rossall, S. 2006. Biological control of fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol. 55: 92-99.   DOI   ScienceOn
14 Onaran, A. and Yanar, Y. 2011. Screening bacterial species for antagonistic activities against the Sclerotinia sclerotiorum (Lib.) De Bary causal agent of cucumber white mold disease. Afr. J. Biotechnol. 10: 2223-2229.
15 Padgham, J. L. and Sikora, R. A. 2007. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot. 26: 971-977.   DOI   ScienceOn
16 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Bio. Evol. 4: 406-425.
17 Sang, M. K., Kim, J. D., Kim, B. S. and Kim, K. D. 2011. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101: 666-678.   DOI   ScienceOn
18 Saravanan, T., Muthusamy, M. and Marimuthu, T. 2003. Development of integrated approach to manage the fusarial wilt of banana. Crop Prot. 22: 1117-1123.   DOI   ScienceOn
19 Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., Ho, H., Clardy, J. and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60: 2023-2030.
20 Abawi, G. S. and Grogan, R. G. 1975. Source of primary inoculum and effects of temperature and moisture on infection of beans by Whetzelinia sclerotiorum. Phytopathology 65: 300-309.   DOI
21 Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.   DOI   ScienceOn
22 Bardin, S. D. and Huang, H. C. 2001. Research on biology and control of Sclerotinia diseases in Canada. Can. J. Plant Pathol. 23: 88-98.   DOI   ScienceOn
23 Chang, S. W. and Kim, S. K. 2003. First report of Sclerotinia rot caused by Sclerotinia sclerotiorum on some vegetable crops in Korea. Plant Pathology J. 19: 79-84.   과학기술학회마을   DOI   ScienceOn
24 Chumthong, A., Kanjanamaneesathian, M., Pengnoo, A. and Wiwattanapatapee, R. 2008. Water-soluble granules containing Bacillus megaterium for biological control of rice sheath blight: formulation, bacterial viability and efficacy testing. World J. Microbiol. Biotechnol. 24: 2499-2507.   DOI
25 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.   DOI   ScienceOn
26 Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S. and Savchuka, S. C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37: 955-964.   DOI   ScienceOn
27 Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Bio. 20: 406-416.   DOI