DOI QR코드

DOI QR Code

수박에 과실썩음병을 유발하는 Acidovorax citrulli의 생물학적 방제를 위한 길항 미생물 선발과 특성 검정

Selection and Characterization of Antagonistic Microorganisms for Biological Control of Acidovorax citrulli Causing Fruit Rot in Watermelon

  • 김기영 (강원대학교 식물자원응용공학과) ;
  • 박효빈 (강원대학교 식물자원응용공학과) ;
  • ;
  • 김현승 (강원대학교 식물자원응용공학과) ;
  • 변은정 (강원대학교 식물자원응용공학과) ;
  • 이인규 (강원대학교 식물자원응용공학과) ;
  • 이윤수 (강원대학교 식물자원응용공학과)
  • Kim, Ki Young (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Park, Hyo Bin (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Adhikari, Mahesh (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kim, Hyun Seung (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Byeon, Eun Jeong (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Lee, In Kyu (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Lee, Youn Su (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University)
  • 투고 : 2022.01.21
  • 심사 : 2022.06.15
  • 발행 : 2022.06.30

초록

본 연구에서는 수박에서 과실썩음병을 유발하는 Acidovorax citrulli를 억제하는 세균을 선발하고, 선발한 세균이 성장촉진 및 길항 효소를 생성하는지 확인하였다. 전국 26개 지역의 94곳의 수박재배지와 25곳의 대형 원예 육묘장에서 수박 식물체(잎, 꽃, 뿌리) 및 토양을 수집하였다. 수집한 sample에서 tryptic soy agar와 yeast extract peptone dextrose 배지에서 각각 1,953종과 841종 총 2,794종의 미생물을 분리하였으며, 2,794종의 미생물 중 2종의 A. citrulli를 선발하였다. 선발한 A. citrulli에 대한 기내 길항성 검정 결과 3-3B에서 24종, 9-4B에서 14종 총 28종의 길항 세균을 선발하였다. 선발한 길항 세균 중 BNPL-6-3B, HYGPL-1-3B, TIPL-6-1B, YGMP-2-7Y는 2종의 bacterial fruit blotch균 모두에서 강한 길항성을 보였다. 선발한 28종의 길항 세균을 대상으로 총 6가지의 생화학적 검증을 진행하였으며, 선발한 길항 세균 중 CB20R-2-5B, TIPL-4-2B, TIPL-6-1B, TIPL-7-4B 4가지 균주가 5가지의 생화학적 검증에서 성장촉진 및 길항 효소를 분비하는 것을 확인하였다. 또한, BNPL-3-3B와 BNPL-6-3B 두 균주는 성장촉진 효소 분비를 확인하는 4가지의 생화학적 검증(ammonia production, phosphate solubilization, starch hydrolysis, siderophore production)에서 모두에서 효소를 분비하는 것으로 확인되었다. 본 연구에서 선발한 28종의 길항 세균은 배지에서 A. citrulli를 효과적으로 억제하였으며, 사이안화 수소와 단백질분해효소 생산 능력 검정을 통해 길항 활성을 확인하였다. 또한, 선발한 길항 세균의 암모니아 생산 및 불용성 인산 가용화 능력을 확인하여 식물 성장촉진 활성을 가지는 것으로 확인하였다. 따라서, 본 연구결과는 향후 수박 과실썩음병 방제제 및 성장촉진제 등의 친환경 농자재 개발에 유용한 기초 자료가 될 것으로 판단된다.

This study was performed to screen the efficacy of antagonistic bacterial isolates from various sources against the bacterial fruit blotch (BFB) causing pathogen (Acidovorax citrulli) in cucurbit crops. In addition, plant growth promoting traits of these antagonistic bacterial isolates were characterized. Two thousand seven hundred ninety-four microorganisms were isolated from the collected samples. Molecular identification revealed two A. citrulli out of 2,794 isolates. In vitro antagonistic results showed that, among the 28 antagonistic bacterial isolates, 24 and 14 bacterial isolates exhibited antagonism against HPP-3-3B and HPP-9-4B, respectively. Antagonistic and growth promotion characterization of the antagonistic bacterial isolates were further studied. Results suggested that, 4 antagonistic bacteria commonly showed both antagonism and growth promotion phenotypes. Moreover, 3 isolates possessed growth promoting activities. Overall results from this study suggests that BFB causing bacterial pathogen (A. citrulli) was suppressed in in vitro antagonism assay by antagonistic bacterial isolates. Furthermore, these antagonistic bacterial isolates possessed growth promotion and antagonistic enzyme production ability. Therefore, data from this study can provide useful basic data for the in vivo experiments which ultimately helps to develop the eco-friendly agricultural materials to control fruit rot disease in cucurbit crops in near future.

키워드

과제정보

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET), through Development of new control methods for bacterial fruit rots through analysis of the pathogenicity of the pathogen (120088-05-2). This research has been worked with the support of a research grant of Kangwon National University in 2021.

참고문헌

  1. Abd El-Rahman, A. F., Shaheen, H. A., Abd El-Aziz, R. M. and Ibrahim, D. S. S. 2019. Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. EgyptJ. Biol. Pest Control 29: 41. https://doi.org/10.1186/s41938-019-0143-7
  2. Ahmad, A.-G. M., Attia, A.-Z. G., Mohamed, M. S. and Elsayed, H. E. 2019. Fermentation, formulation and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence of peanut soil-borne diseases. J. Integr. Agric. 18: 2080-2092. https://doi.org/10.1016/S2095-3119(19)62578-5
  3. Ahmad, F., Ahmad, I. and Khan, M. S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  4. Cappuccino, J. G. and Sherman, N. 1992. Microbiology: a Laboratory Manual. The Benjamin/Cummings Publishing Co., San Francisco, CA, USA. 560 pp.
  5. Clemente, M., Corigliano, M. G., Pariani, S. A., Sanchez-Lopez, E. F., Sander, V. A. and Ramos-Duarte, V. A. 2019. Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming. Int. J. Mol. Sci. 20: 1345. https://doi.org/10.3390/ijms20061345
  6. Crowley, D. E., Wang, Y. C., Reid, C. P. P. and Szaniszlo, P. J. 1991. Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130: 179-198. https://doi.org/10.1007/BF00011873
  7. Dinesh, R., Anandaraj, M., Kumar, A., Bini, Y. K., Subila, K. P. and Aravind, R. 2015. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol. Res. 173: 34-43. https://doi.org/10.1016/j.micres.2015.01.014
  8. Elsayed, T. R., Jacquiod, S., Nour, E. H., Sorensen, S. J. and Smalla, K. 2020. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Front. Microbiol. 10: 2835. https://doi.org/10.3389/fmicb.2019.02835
  9. Essalimi, B., Esserti, S., Rifai, L. A., Koussa, T., Makroum, K., Belfaiza, M. et al. 2022. Enhancement of plant growth, acclimatization, salt stress tolerance and verticillium wilt disease resistance using plant growth-promoting rhizobacteria (PGPR) associated with plum trees (Prunus domestica). Sci. Hortic. 291: 110621. https://doi.org/10.1016/j.scienta.2021.110621
  10. Ferreira, C. M. H., Sousa, C. A., Sanchis-Perez, I., Lopez-Rayo, S., Barros, M. T., Soares, H. M. V. M. et al. 2019. Calcareous soil interactions of the iron (III) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max). Sci. Total Environ. 647: 1586-1593. https://doi.org/10.1016/j.scitotenv.2018.08.069
  11. Fricke, B., Drossler, K., Willhardt, I., Schierhorn, A., Menge, S. and Rucknagel, P. 2001. The cell envelope-bound metalloprotease (camelysin) from Bacillus cereus is a possible pathogenic factor. Biochim. Biophys. Acta 1537: 132-146. https://doi.org/10.1016/S0925-4439(01)00066-7
  12. Hartono, Nurfitriani, Asnawati, F., Citra, H., Handayani, N. I., Junda, M. et al. 2016. Ability of ammonium excretion, indole acetic acid production, and phosphate solubilization of nitrogenfixing bacteria isolated from crop rhizosphere and their effect on plant growth. APRN J. Eng. Appl. Sci. 11: 11735-11741.
  13. Hopkins, D. L. and Thompson, C. M. 2002. Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits. HortScience 37: 924-926. https://doi.org/10.21273/hortsci.37.6.924
  14. Jang, S.-W., Kim, Y.-H., Na, C.-I. and Lee, I.-J. 2017. Changes in mineral uptake and hormone concentrations in rice plants treated with silicon, nitrogen and calcium independently or in combination. Korean J. Crop Sci. 62: 293-303. https://doi.org/10.7740/KJCS.2017.62.4.293
  15. Jung, H. I., Kim, K. K., Park, H. C., Lee, S. M., Kim, Y. G., Kim, H. S., et al. 2007. Isolation and characteristics of bacteria showing biocontrol and biofertilizing activities. J. Life Sci. 17: 1682-1688. https://doi.org/10.5352/JLS.2007.17.12.1682
  16. Jung, T.-K., Kim, J.-H. and Song, H.-G. 2012. Antifungal activity and plant growth promotion by rhizobacteria inhibiting growth of plant pathogenic fungi. Korean J. Microbiol. 48: 16-21. https://doi.org/10.7845/KJM.2012.48.1.016
  17. Jung, W.-J. 2020. Agricultural application of natural polymers chitin and chitosan. Food Sci. Ind. 53: 33-42. https://doi.org/10.23093/FSI.2020.53.1.33
  18. Khan, M. S., Zaidi, A., Ahemad, M., Oves, M. and Wani, P. A. 2010. Plant growth promotion by phosphate solubilizing fungicurrent perspective. Arch. Agron. Soil Sci. 56: 73-98. https://doi.org/10.1080/03650340902806469
  19. Kumar, B. S. D. and Dube, H. C. 1992. Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil. Biol. Biochem. 24: 539-542. https://doi.org/10.1016/0038-0717(92)90078-C
  20. Kumar, G. and Sarma, B. K. 2016. Eco-friendly management of soilborne plant pathogens through plant growth-promoting Rhizobacteria. SATSA Mukhapatra Annu. Tech. Issue 20: 167-171.
  21. Kwon, D.-H., Choi, J.-H., Jeung, H.-K., Lim, J.-H., Joo, G. J. and Kim, S.-D. 2004. Selection and identification of auxin-producing plant growth promoting rhizobacteria having phytopathogenantagonistic activity. J. Korean Soc. Appl. Biol. Chem. 47: 17-21.
  22. Lessl, J. T., Fessehaie, A. and Walcott, R. R. 2007. Colonization of female watermelon blossoms by Acidovorax avenae ssp. citrulli and the relationship between blossom inoculum dosage and seed infestation. J. Phytopathol. 155: 114-121. https://doi.org/10.1111/j.1439-0434.2007.01204.x
  23. Mahadevan, B. and Crawford, D. L. 1997. Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb. Technol. 20: 489-493. https://doi.org/10.1016/S0141-0229(96)00175-5
  24. Mohammed, A. F., Oloyede, A. R. and Odeseye, A. O. 2020. Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Arch. Phytopathol. Plant Prot. 53: 1-16. https://doi.org/10.1080/03235408.2020.1715756
  25. Noh, J.-T. and Choi, Y.-H. 2015. Search for plant-originated antibacterial compounds against pathogen (Acidovorax avenae subsp. citrulli) of watermelon bacterial fruit blotch. Korean J. Org. Agric. 23: 77-89. https://doi.org/10.11625/KJOA.2015.23.1.77
  26. Punja, Z. K. and Zhang, Y. Y. 1993. Plant chitinases and their roles in resistance to fungal diseases. J. Nematol. 25: 526-540.
  27. Rane, K. K. and Latin, R. X. 1992. Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Dis. 76: 509-512. https://doi.org/10.1094/PD-76-0509
  28. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  29. Singh, M., Singh, D., Gupta, A., Pandey, K. D., Singh, P. K. and Kumar, A. 2019. Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. In: PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management, eds. by A. K. Singh, A. Kumar and P. K. Singh, pp. 41-66. Woodhead Publishing, Cambridge, UK.
  30. Song, W. Y., Kim, H. M. So, I. Y. and Kang, Y. K. 1991. Pseudomonas pseudoalcaligenes subsp. citrulli: the causal agent of bacterial fruit blotch rot on watermelon. Korean J. Plant Pathol. 7: 177-182.
  31. Sowel, G. Jr. and Schaad, N. 1979. Pseudomonas pseudoalcaligenes subsp. citrulli on watermelon: seed transmission and resistance of plant introductions. Plant Dis. Rep. 63: 437-441.
  32. Trapet, P., Avoscan, L., Klinguer, A., Pateyron, S., Citerne, S., Chervin, C. et al. 2016. The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol. 171: 675-693. https://doi.org/10.1104/pp.15.01537
  33. Vajravijayan, S., Pletnev, S., Mani, N., Pletneva, N., Nandhagopal, N. and Gunasekaran, K. 2018. Structural insights on starch hydrolysis by plant β-amylase and its evolutionary relationship with bacterial enzymes. Int. J. Biol. Macromol. 113: 329-337. https://doi.org/10.1016/j.ijbiomac.2018.02.138
  34. Voisard, C., Keel, C., Haas, D. and Defago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351-358. https://doi.org/10.1002/j.1460-2075.1989.tb03384.x
  35. Wang, X., Li, Q., Sui, J., Zhang, J., Liu, Z., Du, J. et al. 2019. Isolation and characterization of antagonistic bacteria Paenibacillus jamilae HS-26 and their effects on plant growth. Biomed. Res. Int. 2019: 3638926.
  36. Wang, Y., Peng, S., Hua, Q., Qiu, C., Wu, P., Liu, X. et al. 2021. The longterm effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Front. Microbiol. 12: 693535. https://doi.org/10.3389/fmicb.2021.693535
  37. Xue, Y. Y., Ye, W. and Yang, S. 2019. Isolation and identification of a phosphate solubilizing bacteria and its growth promoting effect. Agric. Res. Arid Areas 37: 253-262.
  38. Yun, C. Y. and Chong, Y. H. 2016. Isolation and characterization of phosphate solubilizing bacteria Pantoea species as a plant growth promoting rhizobacteria. J. Life Sci. 26: 1163-1168. https://doi.org/10.5352/JLS.2016.26.10.1163