Browse > Article
http://dx.doi.org/10.5423/RPD.2004.10.4.331

Isolation and Identification of Antagonistic Bacterium Active against Sclerotinia sclerotioum Causing Sclerotinia Rot on Crisphead Lettuce  

Kim, Han-Woo (Center for Biotechnology, Dong-A University)
Lee, Kwang-Youll (College of Natural Resources and Life Science, Dong-A University)
Baek, Jung-Woo (College of Natural Resources and Life Science, Dong-A University)
Kim, Hyun-Ju (College of Natural Resources and Life Science, Dong-A University)
Park, Jong-Young (College of Natural Resources and Life Science, Dong-A University)
Lee, Jin-Woo (College of Natural Resources and Life Science, Dong-A University)
Jung, Soon-Je (College of Natural Resources and Life Science, Dong-A University)
Moon, Byung-Ju (College of Natural Resources and Life Science, Dong-A University)
Publication Information
Research in Plant Disease / v.10, no.4, 2004 , pp. 331-336 More about this Journal
Abstract
The fungus genus Sclerotinia contains a number of important plant pathogens. Vegetable growers in our country are probably most familiar with Sclerotinia sclerotiorum, the causes of sclerotinia rot on crisphead lettuce. S. sclerotiorum has a wide host range which can include lettuce as well as crops such as broccoli, cabbage, carrots, celery, beans, peppers, potatoes, stocks, and tomato. Some fungicides, including benomyl, are effective in some crops, but not all. So, we isolated a antagonistic bacteria that are active on sclerotinia rot caused by S. sclerotiorum and that can be used to control it. About 702 strains had been isolated from soil around plant roots in the field. Ten strains showed strong antifungal activity against S. sclerotiorum. In pot test for antagonistic activity, A-7 strain showed high control value against the pathogen when compared with others. The strain was, therefore, selected as a biocontrol candidate against sclerotinia rot and its biochemical properties and 16S rDNA sequence was analyzed. The A-7 strain was highly related to Bacillus subtilis and B. amyloliquefaciens. To confirm precise identification, we had performed gyr A gene sequences analysis. Its sequence had 96% similarity with B. amyloliquefaciens. Consequently, the isolate was identified as B. amyloliquefaciens A-7.
Keywords
Antagonistic bacteria; Bacillus amyloliquefaciens; Biocontrol; Crisphead lettuce; Sclerotinia sclerotiorum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbial. 62: 4081-4085
2 Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H. and Shin, K. S. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbial. Lett. 223: 47-51   DOI   ScienceOn
3 Cook, R. J. and Baker, K. F. 1983. The nature and practice of biological control of plant pathogens. APS. st. Paul, Minnesota. 539pp
4 Eshita, S. M., Roberto, N. H., Beale, J. M., Marniya, B. M. and Workman, R. F. 1995. Bacillomycin Lc, a new antibiotic of iturin group: isolation, structures and antifungal activities of the congeners. Journal of Antibiotics 48: 1240-1247   DOI
5 Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1186   DOI   ScienceOn
6 Jack, A. L. and Robert P. L. 1998. Formulation of the biocontrol fungus Cladorrhinum foecundissimum to reduce Damping off disease caused by Rhiroctonia solani and Pythium ultimum. Biological Control. 12(3): 182-190   DOI   ScienceOn
7 Kim, D., Cook, R. J. and Weller, D. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87: 551-558   DOI   ScienceOn
8 Nakamura, L. K 1999. Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizisenii subsp. nov. Int. J. Syst. Bacteriol. 49: 1211-1215   DOI   ScienceOn
9 Pedras, M. S., Ismail, N., Quail, J. W. and Boyetchko, S. M. 2003. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the bicontrol bacterium Psudomonas fluorescens. Phytochemistry 62(7): 1105-1114   DOI   ScienceOn
10 Purdy, L. H. 1955. A broader comcept of the species Sclerotinia sclerotiorum bassed on variability. Phytopathology. 45: 421-427
11 Whipps, J. M. and Gerlagh, M. 1992. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol. Res. 96: 897-907   DOI
12 Zuber, P., Nakano, M. and Marahiel, M. A. 1993. Peptide antibiotics: Bacillus subtilis and other Gram positive bacteria. In : Biochemistry, Physiology, and Molecular Genetics ed. by Sonenshein, A. L., Hoch, J. A. and Losick, R. pp. 897-916. Washington, DC: American Society of Microbiology
13 Kajimura, Y, Sugiyama, M. and Kaneda, M. 1995. Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. Journal of Antibiotics 48: 1095-1110   DOI
14 de Vrije, T., Antoine, N., Buitelaar, R. M., Bruckner, S., Dissevelet, M., Durand, A., Gerlagh,M. and Jones, E. E. et. 2001. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotech. 56: 58-68   DOI   ScienceOn
15 Kim, C. H., Jee, H. J., Park, K S. and Lee, E. J. 1990. Studies on biological control of phytophthora blight of red pepper V. Performance of antagonistic agents in fields. Korean J. Plant Pathol. 6(2): 201-206
16 Biondi, N., Piccardi, R., Margheri, M. C, Rodolfi, L., Smith, G. D. and Tredici, M. R. 2004. Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl. Environ. Microbial. 70(6): 3313-3320   DOI   ScienceOn
17 Dandurand, L. M., Mosher, R. D. and Knudsen, G. R. 2000. Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens. Can. J. Microbiol. 46(11): 1051-1057   DOI   ScienceOn
18 Adams, P. B. and Ayers, W. A. 1979. Ecology of Sclerotinia species. Phytopathol. 69: 896-899   DOI
19 Katz, E. and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriological Review 41: 449-474
20 Podile, A. R. and Prakash, A. P. 1996. Lysis and biological control of Aspergillus niger by Bacillus subtilis API. Can. J. Microbiol. 42: 533-538   DOI   ScienceOn
21 Chun, J. S. and Bae, K. S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek 78: 123-127   DOI   ScienceOn
22 한옥경, 이은탁, 김상달. 2001. 식물병원균을 길항하는 chitinase 생산성 생물방제균 Bacillus amyloliquefaciens 7079의 선발과 chitinase 생산조건. 산업미생물학회지. 29(3): 142-148
23 Kim, P. I. and Chung, K. C. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol Lett. 234(1): 177-183   DOI
24 Li, G. Q., Huang, H. C. and Acharya, S. N. 2003. Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum. Biological Control 28: 11-18   DOI   ScienceOn
25 Souto, G. I., Correa, O. S., Montecchia, M. S., Kerber, N. L., Pucheu, N. L., Bachur, M. and Garcia, A. F. 2004. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin like compounds. Journal of Applied Microbiology 97: 1247-1256   DOI   ScienceOn
26 Merav, K, Marianna, O., Ilan C. and Leonid, C. 2003. Soil borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biology and Biochemistry 35: 323-331   DOI   ScienceOn
27 Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181-187   DOI   ScienceOn
28 Jack, A. L. and Robert, P. L. 2001. Biological control of damping off of greenhouse grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Protectio. 20: 49-56   DOI   ScienceOn
29 Wang, S. L., Shih, I. L., Liang, T. W. and Wang, C. H. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J. Agric Food Chem. 10(50): 2241-2248
30 Ash, C., Farrow, J. A. E., Wallbanks, S. and Collins, M. D. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunitribosomal RNA sequences. Lett. Appl. Microbiol. 13: 202-206   DOI
31 이재필, 손지희, 노성환, 손영준, 문병주. 2000. Bacillus megaterium N4를 이용한 들깨 균핵병(Sclerotinia sclerotiorum)의 생물학적 방제. 균학회소식 12(1): 73p
32 Expert, J. M. and Digat, B. 1995. Biocontrol of Sclerotinia wilt of sunflower by Pseudomonas fluorescens and Pseudomonas putida strains. Can. J. Microbiol. 41: 685-691   DOI   ScienceOn