• Title/Summary/Keyword: 기하학 오차

Search Result 176, Processing Time 0.027 seconds

Simulation of TOA Visible Radiance for the Ocean Target and its Possible use for Satellite Sensor Calibration (해양 표적을 이용한 대기 상단 가시영역에서의 복사휘도 모의와 위성 센서 검보정에의 활용 가능성 연구)

  • Kim, Jung-Gun;Sohn, Byung-Ju;Chung, Eui-Seok;Chun, Hyoung-Wook;Suh, Ae-Sook;Kim, Kum-Lan;Oh, Mi-Lim
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.535-549
    • /
    • 2008
  • Vicarious calibration for the satellite sensor relies on simulated TOA (Top-of-Atmosphere) radiances over various targets. In this study, TOA visible radiance was calculated over ocean targets which are located in five different regions over the Indian and Pacific ocean, and its possible use for the satellite sensor calibration was examined. TOA radiances are simulated with the 6S radiative transfer model for the comparison with MODIS/Terra and SeaWiFS measurements. Geometric angles and sensor characteristics of the reference satellites were taken into account for the simulation. AOT (Aerosol Optical Thickness) from MODIS/Terra, pigment concentrations from Sea WiFS, and ozone amount from OMI measurements were used as inputs to the model. Other atmospheric input parameters such as surface wind and total column water vapor were taken from NCEP/NCAR reanalysis data. The 5-day averaged radiances over all targets show that the percent differences between simulated and observed radiances are within about ${\pm}5%$ in year 2005, indicating that the calculated radiances are in good agreement with satellite measurements. It has also been shown that the algorithm can produce the SeaWiFS radiances within about ${\pm}5%$ uncertainty range. It has been suggested that the algorithm can be used as a tool for calibrating the VIS bands within about 5% uncertainty range.

Design Factor Analysis of End-Effector for Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇용 엔드이펙터의 설계 요인 분석)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.284-290
    • /
    • 2013
  • This study analyzed the geometric, compressive, cutting and friction properties of oriental melons in order to design a gripper capable of soft handling and a cutter for cutting oriental melon vine among the end effector of oriental melon as a preliminary step for developing the end effector of the robot capable of harvesting oriental melons in protected cultivation. As a result, the average length, diameter at the midpoint, weight, volume and roundness of the oriental melons were 108 mm, 70 mm, 188 g, 333 mL and 3.8 mm. Nonlinear regression analysis was performed on the equation $W=L^a{\times}D_2^b$ with variation of the length (L) and diameter (D2) of the weight (W) of the oriental melons. As a result, it was shown that there was a correlation between a of 2.0279 and b of -0.9998 as a constant value. The average diameter of the oriental melon vine was 3.8 mm, and most vines were distributed within a radius of 5 mm from the center. The average yield value, compressive strength and hardness of the oriental melons were $36.5N/cm^2$, $185.7N/cm^2$ and $636.7N/cm^2$, respectively. The average cutting force and shear strength of the oriental melon vines were $2.87{\times}10^{-2}\;N$ and $5.60N/cm^2$, respectively. The maximum friction coefficient of the oriental melons was rubber of 0.609, followed by aluminium of 0.393, stainless steel of 0.177 and teflon of 0.079. It was considered possible to apply it to the size of the gripper and cutter, turning radius, dynamics of drive motor and selection of materials and their quality in light of the position error and safety factor according to the movement when designing end effector based on the analyzed data.

Investigation of O4 Air Mass Factor Sensitivity to Aerosol Peak Height Using UV-VIS Hyperspectral Synthetic Radiance in Various Measurement Conditions (UV-VIS 초분광 위성센서 모의복사휘도를 활용한 다양한 관측환경에서의 에어로솔 유효고도에 대한 O4 대기질량인자 민감도 조사)

  • Choi, Wonei;Lee, Hanlim;Choi, Chuluong;Lee, Yangwon;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.155-165
    • /
    • 2020
  • In this present study, the sensitivity of O4 Air Mass Factor (AMF) to Aerosol Peak Height (APH) has been investigated using radiative transfer model according to various parameters(wavelength (340 nm and 477 nm), aerosol type (smoke, dust, sulfate), aerosol optical depth (AOD), surface reflectance, solar zenith angle, and viewing zenith angle). In general, it was found that O4 AMF at 477 nm is more sensitive to APH than that at 340 nm and is stably retrieved with low spectral fitting error in Differential Optical Absorption Spectroscopy (DOAS) analysis. In high AOD condition, sensitivity of O4 AMF on APH tends to increase. O4 AMF at 340 nm decreased with increasing solar zenith angle. This dependency isthought to be induced by the decrease in length of the light path where O4 absorption occurs due to the shielding effect caused by Rayleigh and Mie scattering at high solar zenith angles above 40°. At 477 nm, as the solar zenith angle increased, multiple scattering caused by Rayleigh and Mie scattering partly leads to the increase of O4 AMF in nonlinear function. Based on synthetic radiance, APHs have been retrieved using O4 AMF. Additionally, the effect of AOD uncertainty on APH retrieval error has been investigated. Among three aerosol types, APH retrieval for sulfate type is found to have the largest APH retrieval error due to uncertainty of AOD. In the case of dust aerosol, it was found that the influence of AOD uncertainty is negligible. It indicates that aerosol types affect APH retrieval error since absorption scattering characteristics of each aerosol type are various.

Development of Adjustable Head holder Couch in H&N Cancer Radiation Therapy (두경부암 방사선 치료 시 Set-Up 조정 Head Holder 장치의 개발)

  • Shim, JaeGoo;Song, KiWon;Kim, JinMan;Park, MyoungHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • In case of all patients who receive radiation therapy, a treatment plan is established and all steps of treatment are planned in the same geometrical condition. In case of head and neck cancer patients who undergo simulated treatment through computed tomography (CT), patients are fixed onto a table for planning, but laid on the top of the treatment table in the radiation therapy room. This study excogitated and fabricated an adjustable holder for head and neck cancer patients to fix patient's position and geometrical discrepancies when performing radiation therapy on head and neck cancer patients, and compared the error before and after adjusting the position of patients due to difference in weight to evaluate the correlation between patients' weight and range of error. Computed tomography system(High Advantage, GE, USA) is used for phantom to maintain the supine position to acquire the images of the therapy site for IMRT. IMRT 4MV X-rays was used by applying the LINAC(21EX, Varian, U.S.A). Treatment planning system (Pinnacle, ver. 9.1h, Philips, Madison, USA) was used. The setup accuracy was compared with each measurement was repeated five times for each weight (0, 15, and 30Kg) and CBCT was performed 30 times to find the mean and standard deviation of errors before and after the adjustment of each weight. SPSS ver.19.0(SPSS Inc., Chicago, IL,USA) statistics program was used to perform the Wilcoxon Rank test for significance evaluation and the Spearman analysis was used as the tool to analyze the significance evaluation of the correlation of weight. As a result of measuring the error values from CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.4{\pm}0.8mm$, $0.8{\pm}0.4mm$, 0 for 0Kg before the adjustment. In 15Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.2{\pm}0.8mm$, $1.2{\pm}0.4mm$, $2.0{\pm}0.4mm$. After adjusting position was X,Y,Z axis was $0.2{\pm}0.4mm$, $0.4{\pm}0.5mm$, $0.4{\pm}0.5mm$. In 30Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.8{\pm}0.4mm$, $2.4{\pm}0.5mm$, $4.4{\pm}0.8mm$. After adjusting position was X,Y,Z axis was $0.6{\pm}0.5mm$, $1.0{\pm}0mm$, $0.6{\pm}0.5mm$. When the holder for the head and neck cancer was used to adjust the ab.0ove error value, the error values from CBCT were $0.2{\pm}0.8mm$ for the X axis, $0.40{\pm}0.54mm$ for Y axis, and 0 for Z axis. As a result of statistically analyzing each value before and after the adjustment the value was significant with p<0.034 at the Z axis with 15Kg of weight and with p<0.038 and p<0.041 at the Y and Z axes respectively with 30Kg of weight. There was a significant difference with p<0.008 when the analysis was performed through Kruscal-Wallis in terms of the difference in the adjusted values of the three weight groups. As it could reduce the errors, patients' reproduction could be improved for more precise and accurate radiation therapy. Development of an adjustable device for head and neck cancer patients is significant because it improves the reproduction of existing equipment by reducing the errors in patients' position.

The Study of Aliasing and Incidence Angle Dependence of Doppler Image on Humeral Artery (상완동맥 Doppler 영상의 입사각 의존성과 Aliasing에 관한 연구)

  • Kim, Sang-Jin;Ji, Tae-Jeong
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.379-387
    • /
    • 2008
  • Among methods to eliminate aliasing effects, the method of increasing velocity scale gradually eliminated the phenomenon in which the direction of the blood flow appeared in reverse. It was done by increasing the velocity scale while maintaining other parameters in the same state. The method of setting the Doppler angle to $0^{\circ}$ did not show significant changes in the wave pattern of the spectrum according to the angle. In actual ultrasonography tests, more accurate tests are expected to be carried out by applying variations to the velocity scale under the considerations of speed, accuracy, and convenience of the examination. The results showed that blood flow velocity increases exponentially according to the Doppler Angle. When the angle goes over $70^{\circ}$, the velocity value increases to an unmeasurable state. This indicates that in blood flow velocity measurements, the blood flow velocity is very dependent on the Doppler Angle. It also shows that the error increases when the incidence angle to the direction of blood flow exceeds $60^{\circ}$, and when the angle exceeds $70^{\circ}$, the error becomes even greater. In addition, he experiment results showed that an angle below $60^{\circ}$ is appropriate and for blood flow velocity measurements in extremity vessels, the most appropriate Doppler Angle is from $45^{\circ}$ to $60^{\circ}$.

  • PDF

Implementation of a Kinematic Network-Based Single-Frequency GPS Measurement Model and Its Simulation Tests for Precise Positioning and Attitude Determination of Surveying Vessel (동적네트워크 기반 단일주파수 GPS 관측데이터 모델링을 통한 측량선의 정밀측위 및 자세각결정 알고리즘 구현과 수치실험에 의한 성능분석)

  • Hungkyu, Lee;Siwan, Lyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • In order to support the development of a cost-effective river bathymetric system, this research has focused on modeling GPS observables, which are obtained by array of five single-frequency receivers (i.e., two references and three rovers) to estimate the high accurate kinematic position, and the surveying vessel altitude. Also, by applying all GPS measurements as multiple-baselines with constraining rover baselines, we derived the socalled ‘kinematic network model.’ From the model, the integer-constrained least-squares (LS) for position estimation and the implicit LS for attitude determination were implemented, while a series of simulation tests with respect to the baseline lengths around 2km performed to demonstrate its accuracy analysis. The on-the-fly (OTF) ambiguity resolution tests revealed that ninety-nine percents of time-to-fix-first ambiguity (TTFF) can be decided in less than two seconds, when the positioning accuracy of ambiguity-fixed solutions was assessed as the greater than or equal to one and two centimeters in horizontal and vertical, respectively. Comparing to the GPS-derived attitudes, the achievable accuracy gradually descended in sequence of yaw, pitch and roll due to the antenna geometric configuration. Furthermore, the RMSE values for the baseline lengths of three to six meters were within ±1′for yaw, and less than ±10′and ±20′for pitch and roll, respectively, but those of between six to fifteen meters were less than ±1′for yaw, ±5′for pitch, and ±10′for roll.

The Use of the Unified Control Points for RPC Adjustment of KOMPSAT-3 Satellite Image (KOMPSAT-3 위성영상의 RPC보정을 위한 국가 통합기준점의 활용)

  • Ahn, Kiweon;Lee, Hyoseong;Seo, Doochun;Park, Byung-Wook;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.539-550
    • /
    • 2014
  • High resolution satellite images have to be oriented and geometrically processed from GCPs(Ground Control Points) to generate precise DEMs(Digital Elevation Models) and topographic maps. In Korea, thousands of national UCPS(Unified Control Points) are established and distributed all over the country by the Korean NGII(National Geographic Information Institute). For that reason, UCPs can be easily searched and downloaded by the national-control-point-record-issues system. Following the study, we suggested the sky-view and road-view from web-portals for searching and identifying UCPs on the images. To evaluate the usefulness of UCPs in RPCs(rational polynomial coefficients) adjustment of the high resolution satellite images, the one UCP, which of using simple the control point, has been applied to adjust the vendor-provided RPCs of the KOMPSAT-3 images. As a result, the positioning error of corrected RPCs was approximately one pixel and one meter. From this experiment, we conclude that the UCPs will be able to replace the survey GCPs for mapping with the satellite images or aerial images.

Map registration of building construction plan drawing with shape matching of cadastral parcel polygon (필지 객체의 형상 정합을 이용한 건물 설계도면의 좌표 등록)

  • Huh, Yong;Yu, Kiyun;Yang, Sungchul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.3
    • /
    • pp.193-198
    • /
    • 2013
  • This study proposed a map registration method of a building construction plan drawing with shape matching of cadastral parcel polygon. In general, the drawing contains information about a building boundary and a cadastral parcel boundary. The shape of this cadastral parcel boundary should be same as that of the corresponding parcel polygon object in the KLIS continuous cadastral map. Thus, shape matching between two parcel boundary polygons from the drawing and cadastral map could present transformation parameters. Translation and scaling amounts could be obtained by difference of centroid coordinates and area ratio of the polygons, respectively. Rotation amount could be obtained by the rotation that presents the minimum Turning function dissimilarity of the polygons. The proposed method was applied for building construction plan drawings in eAIS for an urban area in Suwon. To assess positional accuracy of map registration, building polygons in registered drawings and aerial photos were compared. According to the accuracy of the cadastral map which is the reference dataset of the proposed method, the RMSE of corresponding buildings' corners was 0.95m and 2.37m in new and old urban areas, respectively.

Extraction of Sea Surface Temperature in Coastal Area Using Ground-Based Thermal Infrared Sensor On-Boarded to Aircraft (지상용 열적외선 센서의 항공기 탑재를 통한 연안 해수표층온도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin;Kim, Seung Hee;Cho, Yang-Ki;Lee, Sang-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.797-807
    • /
    • 2014
  • The Sea Surface Temperature (SST) is one of the most important oceanic environmental factors in determining the change of marine environments and ecological activities. Satellite thermal infrared images can be effective for understanding the global trend of sea surface temperature due to large scale. However, their low spatial resolution caused some limitations in some areas where complicated and refined coastal shapes due to many islands are present as in the Korean Peninsula. The coastal ocean is also very important because human activities interact with the environmental change of coastal area and most aqua farming is distributed in the coastal ocean. Thus, low-cost airborne thermal infrared remote sensing with high resolution capability is considered for verifying its possibility to extract SST and to monitor the changes of coastal environment. In this study, an airborne thermal infrared system was implemented using a low-cost and ground-based thermal infrared camera (FLIR), and more than 8 airborne acquisitions were carried out in the western coast of the Korean Peninsula during the periods between May 23, 2012 and December 7, 2013. The acquired thermal infrared images were radiometrically calibrated using an atmospheric radiative transfer model with a support from a temperature-humidity sensor, and geometrically calibrated using GPS and IMU sensors. In particular, the airborne sea surface temperature acquired in June 25, 2013 was compared and verified with satellite SST as well as ship-borne thermal infrared and in-situ SST data. As a result, the airborne thermal infrared sensor extracted SST with an accuracy of $1^{\circ}C$.

A Study on Improving Reliability of Benefit Estimation Based on User Equilibrium Traffic Assignment Results (이용자 균형 통행배정 결과를 이용한 편익추정의 안정성 제고방안 연구)

  • Kim, Jae-Yeong;Son, Ui-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.19-31
    • /
    • 2007
  • When estimating the benefits from an investment project in the transportation sector, errors caused by many factors may exist. This study focuses on user equilibrium traffic assignment methods and stopping criteria. According to previous studies, when using a user equilibrium assignment model, the benefits of travel time savings can be effected by the relative gap value. As the stopping criteria decreases, the time needed for traffic assignment increases, so that lowering the criteria cannot be the best solution. Therefore, an effort is necessary to reduce this change rate and thus improve reliability. This paper considers three methods: reducing the links subject to benefit calculation, extracting sub-area O/D tables and networks, and applying the mean value of successive traffic assignment results. The results of the analysis show that the method using the mean value of five results is more proper than the other methods. Using the sub-area analysis method, if the study area is small the benefits of a project might be over- or under-estimated. This paper used a nationwide O/D table and network at peak time as a case study. The resulting patterns can differ according to basic data to be used in analysis. So further analysis using the data from metropolitan areas are needed.