DOI QR코드

DOI QR Code

Simulation of TOA Visible Radiance for the Ocean Target and its Possible use for Satellite Sensor Calibration

해양 표적을 이용한 대기 상단 가시영역에서의 복사휘도 모의와 위성 센서 검보정에의 활용 가능성 연구

  • Kim, Jung-Gun (School of Earth of Environmental Sciences, Seoul National University) ;
  • Sohn, Byung-Ju (School of Earth of Environmental Sciences, Seoul National University) ;
  • Chung, Eui-Seok (School of Earth of Environmental Sciences, Seoul National University) ;
  • Chun, Hyoung-Wook (School of Earth of Environmental Sciences, Seoul National University) ;
  • Suh, Ae-Sook (Korea Meteorological Administration) ;
  • Kim, Kum-Lan (Korea Meteorological Administration) ;
  • Oh, Mi-Lim (Korea Meteorological Administration)
  • Published : 2008.12.30

Abstract

Vicarious calibration for the satellite sensor relies on simulated TOA (Top-of-Atmosphere) radiances over various targets. In this study, TOA visible radiance was calculated over ocean targets which are located in five different regions over the Indian and Pacific ocean, and its possible use for the satellite sensor calibration was examined. TOA radiances are simulated with the 6S radiative transfer model for the comparison with MODIS/Terra and SeaWiFS measurements. Geometric angles and sensor characteristics of the reference satellites were taken into account for the simulation. AOT (Aerosol Optical Thickness) from MODIS/Terra, pigment concentrations from Sea WiFS, and ozone amount from OMI measurements were used as inputs to the model. Other atmospheric input parameters such as surface wind and total column water vapor were taken from NCEP/NCAR reanalysis data. The 5-day averaged radiances over all targets show that the percent differences between simulated and observed radiances are within about ${\pm}5%$ in year 2005, indicating that the calculated radiances are in good agreement with satellite measurements. It has also been shown that the algorithm can produce the SeaWiFS radiances within about ${\pm}5%$ uncertainty range. It has been suggested that the algorithm can be used as a tool for calibrating the VIS bands within about 5% uncertainty range.

위성 센서의 대리 검정은 다양한 표적을 이용하여 모의된 대기 상단의 복사휘도를 이용하여 수행된다. 본 연구에서는 인도양과 태평양상에 있는 다섯 개의 해양 표적을 통해 대기상단 가시영역에서의 복사휘도를 계산하고, 위성 센서 검보정에의 활용 가능성에 대해서 알아보았다. 복사전달모델인 65를 통해 계산된 대기상단의 복사휘도를 MODIS/Terra와 SeaWiFS 관측 값과 비교하였으며, 모의를 위하여 이들 위성의 기하정보와 복사계의 특징들이 사용되었다. MODIS/Terra의 에어로솔 광학적 두께 (AOT: Aeroso) Optical Thickness)와 SeaWiFS의 pigment concentrations, OMI의 오존 자료가 모델 입력 값으로 사용되었고 NCEP/NCAR 재분석 자료로부터 바람과 총가강수량에 대한 정보를 얻었다. 전 표적 지역에 대해서 5일 평균한 결과, 2005년 한 해 동안 계산된 복사휘도와 관측된 복사휘도와의 백분율 차이는 약 ${\pm}5%$의 수준으로 나타났고 이것은 계산된 복사휘도가 위성에서의 관측 값과 잘 일치함을 의미한다. 또한 동일 알고리즘으로 약 ${\pm}5%$의 오차수준 이내의 결과를 SeaWiFS를 통해 얻을 수 있었다. 이러한 결과는 위성의 가시채널 검보정이 본 연구의 복사휘도 모의 방법을 통해서 ${\pm}5%$의 오차범위 안에서 이루어질 수 있음을 보여준다.

Keywords

References

  1. 기상연구소, 2005. 통신해양기상위성 1호 개발사업(II), 기상자료처리시스템 개발(II), 2차년도보고서, 기상연구소/기상청: 23-34
  2. 한국해양연구원, 2002. OSMI 해양활용 및 검보정, 최종보고서, 과학기술부: 169-171
  3. Barnes, R. A., R. E. Eplee, G. M. Schmidt, F. S. Patt, and C. R. McClain, 2001. Calibration of SeaWiFS. I. Direct techniques. Appl. Opt., 40: 6682-6700 https://doi.org/10.1364/AO.40.006682
  4. Barnes, W. L., T. S. Pagano and V. V. Salomonson, 1998. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36: 1088-1100 https://doi.org/10.1109/36.700993
  5. Cox, C., and W. Munk, 1954. Measurements of the roughness of the sea surface from photographs of the sun's glitter. J. Opt. Soc. Am., 44: 838-850 https://doi.org/10.1364/JOSA.44.000838
  6. Eplee, R. E., W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, 2001. Calibration of SeaWiFS. II. Vicarious techniques. Appl. Opt., 40: 6701-6718 https://doi.org/10.1364/AO.40.006701
  7. Figueras, D., A. Karnieli, A. Brenner, and Y. J. Kaufman, 2004. Masking turbid water in the southeastern Mediterranean Sea utilizing the SeaWiFS 510 nm spectral band. Int. J. Remote Sen., 25: 4051-4059 https://doi.org/10.1080/01431160310001657498
  8. Gordon, H. R., 1998. In-orbit calibration strategy for ocean color sensors. Remote Sens. Environ., 63: 265-278 https://doi.org/10.1016/S0034-4257(97)00163-6
  9. Gordon, H. R., and M. Wang, 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Appl. Opt., 33: 443-452 https://doi.org/10.1364/AO.33.000443
  10. Govaerts, Y. M., and M. Clerici, 2004. Evaluation of radiative transfer simulations over bright desert calibration sites, IEEE Trans. Geosci. Remote Sens., 42: 176-187 https://doi.org/10.1109/TGRS.2003.815406
  11. Govaerts, Y. M., M. Clerici, and N. Clerbaux, 2004. Operational calibration of the Meteosat radiometer VIS band. IEEE Trans. Geosci. Remote Sens., 42: 1900-1914 https://doi.org/10.1109/TGRS.2004.831882
  12. Hooker S. B., W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, 1992. An overview of SeaWiFS and ocean color. In: NASA Tech. Memo. 104566, Vol. 1, NASA Goddard Space Flight Center, Greenbelt, MD: 24
  13. Jerlov, N. G., 1951. Optical studies of ocean water. Rep. Swedish Deep-Sea Exped., 3: 1-59
  14. Koepke, P., 1982. Vicarious satellite calibration in the solar spectral range by means of calculated radiances and its application to Meteosat. Appl. Opt., 21: 2845-2854
  15. Koepke, P., 1984. Effective reflectance of oceanic whitecaps. Appl. Opt., 23: 1816-1824 https://doi.org/10.1364/AO.23.001816
  16. Kriebel, K. T., and V. Amann, 1993. Vicarious calibration of the Meteosat visible. J. Atmos. Oceanic Technol., 10: 225-232 https://doi.org/10.1175/1520-0426(1993)010<0225:VCOTMV>2.0.CO;2
  17. McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, 1972. Optical properties of the atmosphere. 3rd ed.. Environ. Res. Pap 411, Air Force Cambrige Res. Lab., Bedford, Mass
  18. Monahan, E. C. and I. G. O'Muircheartaigh, 1980. Optimal power law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10: 2094-2099 https://doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2
  19. Morel, A., and L. Prieur, 1977. Analysis of variations in ocean color. Limnol. Oceanogr., 22: 709-722 https://doi.org/10.4319/lo.1977.22.4.0709
  20. Moulin, C., C. E. Lambert, J. Poitou, and F. Dulac, 1996. Long term calibration of the Meteosat solar (VIS) channel using desert and ocean targets. Int. J. Remote Sens., 17: 1183-1200 https://doi.org/10.1080/01431169608949076
  21. Moulin, C, and X. Schneider, 1999. Calibration of the Meteosat-5 sensor visible channel. Int. J. Remote Sens., 20: 195-200 https://doi.org/10.1080/014311699213703
  22. Seemann, S. W., J. Li, W. P. Menzel, and L. E. Gumley, 2003. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor., 42: 1072-1091 https://doi.org/10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2
  23. Shettle, E. P. and R. W. Fenn, 1979. Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Air Force Geoph. Lab., Environmental Research Papers, 676, AFGLTR-79-0214, USAF: 94
  24. Smith, R. C., and K. S. Baker, 1978. The bio-optical state of ocean waters and remote sensing. Limnol. Oceanogr., 23: 247-259 https://doi.org/10.4319/lo.1978.23.2.0247
  25. Sohn, B. J., D. H. Kim, S. J. Yoo, and Y. S. Kim, 2000. Examining a vicarious calibration method for the TOA radiance initialization of KOMPSAT OSMI. J. Korean Soc. Remote Sens., 16: 305-313 https://doi.org/10.7780/kjrs.2000.16.4.305
  26. Thome, K. J., 1999. Validation plan for MODIS level 1 at-sensor radiance, Remote sensing group of the optical sciences center: 34
  27. Vermote, E. F., D. Tanre, J. L. Deuze, M. Herman, and J. J. Morcrette, 1997. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens., 35: 675-686 https://doi.org/10.1109/36.581987
  28. Yoshida, M., H. Murakami, Y. Mitomi, M. Hori, K. J. Thome, D. K. Clark, and H. Fukushima, 2005. Vicarious calibration of GLI by ground observation data. IEEE Trans. Geosci. Remote Sens., 43: 2167-2176 https://doi.org/10.1109/TGRS.2005.856113
  29. Xiong, X., and W. Barnes, 2006. An overview of MODIS radiometric calibration and characterization. Adv. Atmos. Sci., 23: 69-79 https://doi.org/10.1007/s00376-006-0008-3