DOI QR코드

DOI QR Code

Extraction of Sea Surface Temperature in Coastal Area Using Ground-Based Thermal Infrared Sensor On-Boarded to Aircraft

지상용 열적외선 센서의 항공기 탑재를 통한 연안 해수표층온도 추출

  • Kang, Ki-Mook (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Duk-Jin (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Seung Hee (School of Earth and Environmental Sciences, Seoul National University) ;
  • Cho, Yang-Ki (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sang-Ho (Department of Oceanography, Kunsan National University)
  • 강기묵 (서울대학교 지구환경과학부) ;
  • 김덕진 (서울대학교 지구환경과학부) ;
  • 김승희 (서울대학교 지구환경과학부) ;
  • 조양기 (서울대학교 지구환경과학부) ;
  • 이상호 (군산대학교 해양학과)
  • Received : 2014.11.25
  • Accepted : 2014.12.23
  • Published : 2014.12.31

Abstract

The Sea Surface Temperature (SST) is one of the most important oceanic environmental factors in determining the change of marine environments and ecological activities. Satellite thermal infrared images can be effective for understanding the global trend of sea surface temperature due to large scale. However, their low spatial resolution caused some limitations in some areas where complicated and refined coastal shapes due to many islands are present as in the Korean Peninsula. The coastal ocean is also very important because human activities interact with the environmental change of coastal area and most aqua farming is distributed in the coastal ocean. Thus, low-cost airborne thermal infrared remote sensing with high resolution capability is considered for verifying its possibility to extract SST and to monitor the changes of coastal environment. In this study, an airborne thermal infrared system was implemented using a low-cost and ground-based thermal infrared camera (FLIR), and more than 8 airborne acquisitions were carried out in the western coast of the Korean Peninsula during the periods between May 23, 2012 and December 7, 2013. The acquired thermal infrared images were radiometrically calibrated using an atmospheric radiative transfer model with a support from a temperature-humidity sensor, and geometrically calibrated using GPS and IMU sensors. In particular, the airborne sea surface temperature acquired in June 25, 2013 was compared and verified with satellite SST as well as ship-borne thermal infrared and in-situ SST data. As a result, the airborne thermal infrared sensor extracted SST with an accuracy of $1^{\circ}C$.

해수표층온도(sea surface temperature; SST)는 해양환경 변화와 해양생물의 생태활동의 특성을 파악하는데 매우 중요한 환경요소 중 하나이다. 인공위성 열적외선 영상으로는 전 세계의 해수표층온도 변화를 파악하는 데는 유용하지만, 섬들이 많고, 해안선이 복잡한 한반도 연안 해역에서는 고해상도의 해수표층온도 자료를 획득하기에는 어려운 실정이다. 하지만 인간생활에 밀접한 영향을 주고받으며 대부분의 양식장이 분포하고 있는 곳이 연안 해역이므로 상세한 해수표층온도의 변화를 파악하는 것이 매우 중요하다. 이를 위하여 본 연구는 저비용의 지상용 열적외선카메라(FLIR)를 항공기용으로 구축하여 연안 표층수온 추출 가능성을 확인하고자 하였다. 2012년 5월 23일부터 2013년 12월 7일까지 최소 8회 이상 서해 연안에 대하여 항공기 관측실험을 실시하였으며, 이때 구축된 열적외선 센서를 탑재하여 해수표층온도 추출 연구를 수행하였다. 항공기에 탑재된 열적외선 센서로부터 획득된 자료는 대기모델 및 온/습도계 센서를 이용하여 방사보정(radiometric correction)을 수행하였고, Global Positioning System (GPS) 및 Inertial Measurement Unit (IMU) 센서를 이용하여 기하보정(geometric correction)을 자동으로 수행한 후 해수 표층온도 자료를 추출하였다. 그 중 2013년 6월 25일에 관측된 항공기 해수표층온도에 대해 인공위성 및 선박 열적외선 센서를 통해 획득된 해수표층온도 자료와 비교하였으며, 선박 현장 관측 자료와는 $1^{\circ}C$ 이내 오차 범위의 해수표층온도를 획득하였다.

Keywords

References

  1. Brown, O.B. 1999. MODIS Infrared Sea Surface Temperature Algorithm: Algorithm Theoretical Basis Document Version 2.0, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod25.pdf.
  2. Chandrasekhar, S., 1950. Radiative Transfer, Clarendon Press.
  3. Donlon, C.J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012. The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA), Remote Sensing of Environment., 116: 140-158. https://doi.org/10.1016/j.rse.2010.10.017
  4. Jeong, J., 2011. The change detection of SST of Saemangeum coastral area using Landsat and MODIS, Korean Society of Environmental Impact Assessment, 20(2): 199-205 (in Korean with English abstract).
  5. John, P.S. and H.S. Omar, 1982. Aircraft measurement of sea surface temperature during the West coast experiment, IEEE Journal of oceanic engineering, OE-7(3), 132-135.
  6. Kim D., Y. Cho, K. Kang, J. Kim, and S. Kim, 2013. Development of Airborne Remote Sensing Systime for Monitoring Marine Meteorology (Sea Surface Wind and Temperature), The Sea: Journal of the Korean Socieity of Oceanography, 18(1), 32-39 (in Korean with English abstract). https://doi.org/10.7850/jkso.2013.18.1.32
  7. Lee H., H. Han, 2005. Anlaysis of Lake Water Temperature and Seasonal Stratification in the Han River System from Time-Series of Landsat Images, Korean Journal of Remote Sensing, 21(4): 253-271 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2005.21.4.253
  8. Lee T., K. Kim, J. Choi, J. Ku, and S. Lee, 1993. Airborne remote sensing for environmental monitoring research: Development of correction technique & fundamental study for environmental application, Annual report, KR-93(T)-13 (in Korean with English abstract).
  9. Price J.C., 1983. Estimating surface temperatures from satellite thermal infrared data - A simple formulation for the atmospheric effect, Remote Sensing of Environment, 13: 353-361. https://doi.org/10.1016/0034-4257(83)90036-6
  10. Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the earth's atmosphere, Bullentin of the American Meteorological Society, 79(10): 2101-2114. https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
  11. Sobrino, J.A., J.C. Jimenez-Munoz, P.J. Zarco-Tejada, G. Sepulcre-Canto, and E. de Miguel, 2006. Land surface temperature derived from airborne hyperspectral scanner thermal infrared data, Remote Sensing of Environment, 102: 99-115. https://doi.org/10.1016/j.rse.2006.02.001
  12. Torgersen, C.E., R.N. Faux, B.A. McIntosh, N.J. Poage, and D.J. Norton, 2001. Airborne thermal remote sensing for water temperature assessment in rivers and streams, Remote Sensing of Environment, 76: 386-398. https://doi.org/10.1016/S0034-4257(01)00186-9
  13. Yoon, S., J. Ryu, J. Min, Y. Ahn, S. Lee, and J. Won, 2009. Monitoring of the Sea Surface Temperature in the Saemangeum Sea are using the thermal infrared satellite data, Korean Journal of Remote Sensing, 25(4): 339-357 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2009.25.4.339

Cited by

  1. 시계열 해수면온도 산출을 위한 이어도 종합해양과학기지 열적외선 관측 시스템 구축 vol.22, pp.3, 2014, https://doi.org/10.7850/jkso.2017.22.3.057
  2. 무인항공기에 탑재된 열적외선 센서 기반의 지표면 온도 정사영상 제작 및 피복별 온도 정확도 분석 vol.36, pp.4, 2014, https://doi.org/10.7848/ksgpc.2018.36.4.263