Browse > Article
http://dx.doi.org/10.7780/kjrs.2008.24.6.535

Simulation of TOA Visible Radiance for the Ocean Target and its Possible use for Satellite Sensor Calibration  

Kim, Jung-Gun (School of Earth of Environmental Sciences, Seoul National University)
Sohn, Byung-Ju (School of Earth of Environmental Sciences, Seoul National University)
Chung, Eui-Seok (School of Earth of Environmental Sciences, Seoul National University)
Chun, Hyoung-Wook (School of Earth of Environmental Sciences, Seoul National University)
Suh, Ae-Sook (Korea Meteorological Administration)
Kim, Kum-Lan (Korea Meteorological Administration)
Oh, Mi-Lim (Korea Meteorological Administration)
Publication Information
Korean Journal of Remote Sensing / v.24, no.6, 2008 , pp. 535-549 More about this Journal
Abstract
Vicarious calibration for the satellite sensor relies on simulated TOA (Top-of-Atmosphere) radiances over various targets. In this study, TOA visible radiance was calculated over ocean targets which are located in five different regions over the Indian and Pacific ocean, and its possible use for the satellite sensor calibration was examined. TOA radiances are simulated with the 6S radiative transfer model for the comparison with MODIS/Terra and SeaWiFS measurements. Geometric angles and sensor characteristics of the reference satellites were taken into account for the simulation. AOT (Aerosol Optical Thickness) from MODIS/Terra, pigment concentrations from Sea WiFS, and ozone amount from OMI measurements were used as inputs to the model. Other atmospheric input parameters such as surface wind and total column water vapor were taken from NCEP/NCAR reanalysis data. The 5-day averaged radiances over all targets show that the percent differences between simulated and observed radiances are within about ${\pm}5%$ in year 2005, indicating that the calculated radiances are in good agreement with satellite measurements. It has also been shown that the algorithm can produce the SeaWiFS radiances within about ${\pm}5%$ uncertainty range. It has been suggested that the algorithm can be used as a tool for calibrating the VIS bands within about 5% uncertainty range.
Keywords
TOA radiances; MODIS; SeaWiFS; AOT; vicarious calibration; ocean targets;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 한국해양연구원, 2002. OSMI 해양활용 및 검보정, 최종보고서, 과학기술부: 169-171
2 Eplee, R. E., W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, 2001. Calibration of SeaWiFS. II. Vicarious techniques. Appl. Opt., 40: 6701-6718   DOI
3 Figueras, D., A. Karnieli, A. Brenner, and Y. J. Kaufman, 2004. Masking turbid water in the southeastern Mediterranean Sea utilizing the SeaWiFS 510 nm spectral band. Int. J. Remote Sen., 25: 4051-4059   DOI   ScienceOn
4 Gordon, H. R., 1998. In-orbit calibration strategy for ocean color sensors. Remote Sens. Environ., 63: 265-278   DOI   ScienceOn
5 Gordon, H. R., and M. Wang, 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Appl. Opt., 33: 443-452   DOI
6 Koepke, P., 1982. Vicarious satellite calibration in the solar spectral range by means of calculated radiances and its application to Meteosat. Appl. Opt., 21: 2845-2854
7 Morel, A., and L. Prieur, 1977. Analysis of variations in ocean color. Limnol. Oceanogr., 22: 709-722   DOI   ScienceOn
8 Sohn, B. J., D. H. Kim, S. J. Yoo, and Y. S. Kim, 2000. Examining a vicarious calibration method for the TOA radiance initialization of KOMPSAT OSMI. J. Korean Soc. Remote Sens., 16: 305-313   과학기술학회마을   DOI
9 Xiong, X., and W. Barnes, 2006. An overview of MODIS radiometric calibration and characterization. Adv. Atmos. Sci., 23: 69-79   DOI   ScienceOn
10 Koepke, P., 1984. Effective reflectance of oceanic whitecaps. Appl. Opt., 23: 1816-1824   DOI
11 Moulin, C., C. E. Lambert, J. Poitou, and F. Dulac, 1996. Long term calibration of the Meteosat solar (VIS) channel using desert and ocean targets. Int. J. Remote Sens., 17: 1183-1200   DOI   ScienceOn
12 Thome, K. J., 1999. Validation plan for MODIS level 1 at-sensor radiance, Remote sensing group of the optical sciences center: 34
13 Shettle, E. P. and R. W. Fenn, 1979. Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Air Force Geoph. Lab., Environmental Research Papers, 676, AFGLTR-79-0214, USAF: 94
14 기상연구소, 2005. 통신해양기상위성 1호 개발사업(II), 기상자료처리시스템 개발(II), 2차년도보고서, 기상연구소/기상청: 23-34
15 Govaerts, Y. M., and M. Clerici, 2004. Evaluation of radiative transfer simulations over bright desert calibration sites, IEEE Trans. Geosci. Remote Sens., 42: 176-187   DOI   ScienceOn
16 Moulin, C, and X. Schneider, 1999. Calibration of the Meteosat-5 sensor visible channel. Int. J. Remote Sens., 20: 195-200   DOI   ScienceOn
17 Cox, C., and W. Munk, 1954. Measurements of the roughness of the sea surface from photographs of the sun's glitter. J. Opt. Soc. Am., 44: 838-850   DOI
18 Yoshida, M., H. Murakami, Y. Mitomi, M. Hori, K. J. Thome, D. K. Clark, and H. Fukushima, 2005. Vicarious calibration of GLI by ground observation data. IEEE Trans. Geosci. Remote Sens., 43: 2167-2176   DOI   ScienceOn
19 Seemann, S. W., J. Li, W. P. Menzel, and L. E. Gumley, 2003. Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor., 42: 1072-1091   DOI   ScienceOn
20 Barnes, W. L., T. S. Pagano and V. V. Salomonson, 1998. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36: 1088-1100   DOI   ScienceOn
21 Jerlov, N. G., 1951. Optical studies of ocean water. Rep. Swedish Deep-Sea Exped., 3: 1-59
22 Hooker S. B., W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, 1992. An overview of SeaWiFS and ocean color. In: NASA Tech. Memo. 104566, Vol. 1, NASA Goddard Space Flight Center, Greenbelt, MD: 24
23 Monahan, E. C. and I. G. O'Muircheartaigh, 1980. Optimal power law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10: 2094-2099   DOI
24 Barnes, R. A., R. E. Eplee, G. M. Schmidt, F. S. Patt, and C. R. McClain, 2001. Calibration of SeaWiFS. I. Direct techniques. Appl. Opt., 40: 6682-6700   DOI
25 Vermote, E. F., D. Tanre, J. L. Deuze, M. Herman, and J. J. Morcrette, 1997. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens., 35: 675-686   DOI   ScienceOn
26 Govaerts, Y. M., M. Clerici, and N. Clerbaux, 2004. Operational calibration of the Meteosat radiometer VIS band. IEEE Trans. Geosci. Remote Sens., 42: 1900-1914   DOI   ScienceOn
27 McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, 1972. Optical properties of the atmosphere. 3rd ed.. Environ. Res. Pap 411, Air Force Cambrige Res. Lab., Bedford, Mass
28 Smith, R. C., and K. S. Baker, 1978. The bio-optical state of ocean waters and remote sensing. Limnol. Oceanogr., 23: 247-259   DOI   ScienceOn
29 Kriebel, K. T., and V. Amann, 1993. Vicarious calibration of the Meteosat visible. J. Atmos. Oceanic Technol., 10: 225-232   DOI   ScienceOn