DOI QR코드

DOI QR Code

Map registration of building construction plan drawing with shape matching of cadastral parcel polygon

필지 객체의 형상 정합을 이용한 건물 설계도면의 좌표 등록

  • Huh, Yong (Engineering Research Institute, Seoul National Univ.) ;
  • Yu, Kiyun (Dept. of Civil and Environmental Engineering, Seoul National Univ.) ;
  • Yang, Sungchul (Spatial Information Research Institute, Korea Cadastral Survey Corp.)
  • Received : 2013.03.21
  • Accepted : 2013.06.19
  • Published : 2013.06.30

Abstract

This study proposed a map registration method of a building construction plan drawing with shape matching of cadastral parcel polygon. In general, the drawing contains information about a building boundary and a cadastral parcel boundary. The shape of this cadastral parcel boundary should be same as that of the corresponding parcel polygon object in the KLIS continuous cadastral map. Thus, shape matching between two parcel boundary polygons from the drawing and cadastral map could present transformation parameters. Translation and scaling amounts could be obtained by difference of centroid coordinates and area ratio of the polygons, respectively. Rotation amount could be obtained by the rotation that presents the minimum Turning function dissimilarity of the polygons. The proposed method was applied for building construction plan drawings in eAIS for an urban area in Suwon. To assess positional accuracy of map registration, building polygons in registered drawings and aerial photos were compared. According to the accuracy of the cadastral map which is the reference dataset of the proposed method, the RMSE of corresponding buildings' corners was 0.95m and 2.37m in new and old urban areas, respectively.

본 연구는 객체 정합 기법을 적용하여 건물 인허가 과정에서 제출되는 설계도면에 실세계의 좌표를 등록하는 방법을 제안한다. 일반적으로 설계도면에는 건물과 함께 건물이 위치할 필지 경계선이 포함되어 있다. 필지 경계선으로부터 얻어지는 폴리곤과 KLIS 연속지적도 상의 필지 폴리곤은 동일한 형상을 가지므로, 형상 정합 기법을 적용하여 좌표 등록에 필요한 변환 정보를 얻을 수 있다. 본 연구는 설계도면에 존재하는 선형들의 기하학적 왜곡을 방지하기 위하여 상사 변환을 적용하였다. 이 변환에 필요한 평행 이동량, 축적 변화량 그리고 회전 변화량은 각각 건설도면과 연속지적도의 대응 폴리곤의 무게중심 차이, 면적비, 그리고 선회 함수를 이용한 형상 정합 과정에서 얻어지는 최적 회전 변화량으로 결정하였다. 제안된 방법을 경기도 수원시를 대상으로 세움터에 제출된 건설도면에 적용하였으며, 좌표 등록의 위치정확도를 평가하기 위하여 좌표 등록된 설계도면의 건물 객체와 항공사진을 중첩하여 건물 모서리의 좌표를 비교하였다. 평가 결과 좌표 등록에 참조한 연속지적도와 항공사진의 위치 오차의 크기에 따라 구도심지역에서는 RMSE 기준 2.37m의 정확도를, 신도심지역에서는 0.95m의 위치 정확도를 얻을 수 있었다.

Keywords

References

  1. Arkin, E.M., Chew. L.P., Huttenlocher, D.P., Kedem, K. and Mitchell, J.S.B. (1991), An efficiently computable metric for compar ing polygonal shapes, IEEE Transaction on PAMI, Vol. 13, No. 3, pp. 209-215. https://doi.org/10.1109/34.75509
  2. Choi, H.S., (2010), A study of accuracy improvement and application of continuous cadastral maps, Master dissertation, Gyeongsang National University. (in Korean with English abstract)
  3. Duckham, M. and Worboys, M. (2005), An algebraic approach to automated geospatial information fusion, International Journal of Geographical Information Systems, Vol. 19, No. 5, pp. 537-557. https://doi.org/10.1080/13658810500032339
  4. Huang, L., Wang, S., Ye, Y., Wang, B. and Wu, L. (2010), Feature matching in cadastral map integration with a case study of Beijing, Proceedings of 2010 18th International Conference on Geoinformatics, Peking University, Beijing, China, pp. 1-4.
  5. Huh, Y. and Yu, K. (2012), Shape similarity measure for M:N areal object pairs using the Zernike moment descriptor, Journal of Korea Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 30, No. 2, pp. 147-156. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2012.30.2.153
  6. Huh, Y., Yang, S., Ga, C., Yu, K. and Shi, W. (2013), Line segment confidence region-based string matching method for map conflation, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 78, pp. 69-84. https://doi.org/10.1016/j.isprsjprs.2013.01.006
  7. Li, L. and Goodchild, M. (2011), An optimization model for linear feature matching in geographical data conflation. International Journal of Image and Data Fusion, Vol. 2, No. 4, pp. 309-328. https://doi.org/10.1080/19479832.2011.577458
  8. Min, D. Zhilin, L. and Xiaoyong, C. (2007), Extended Hausdor ff dist ance for spatial objects in GIS, International Journal of Geographical Information Science, Vol. 21, No. 4, pp. 459-475. https://doi.org/10.1080/13658810601073315
  9. Samal, A., Seth, S. and Cueto, K. (2004), A featurebased approach to conflation of geospatial sources, International Journal of Geographical Information science, Vol. 18, No. 5, pp. 459-489. https://doi.org/10.1080/13658810410001658076
  10. Son, H., Y., S., Ga, C., Yu, K. and Huh, Y. (2013), Benefit analysis model of the national map revision program using replacement cost method, Journal of Korea Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 31, No. 1, pp. 79-87. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2013.31.1.79
  11. Yuan, S. and Tao, C. (1999), Development of conflation components, Proceedings of the International Conference on Geoinformatics and Socioinformatics, Ann Arbor, Michigan, USA, pp. 1-13.