• Title/Summary/Keyword: 군속도분산

Search Result 28, Processing Time 0.026 seconds

A Study of the comparison of Inversion of Rayleigh wave Group and Phase Velocities for Regional Near-Surface 2-Dimensional Velocity Structure (천부지각 2차원 속도구조를 위한 레일리파의 군속도와 위상속도 역산의 비교 연구)

  • Lee, Bo-Ra;Jung, Hee-Ok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.51-59
    • /
    • 2006
  • The surface wave data obtained in a tidal flat located in the sw coast of the Korean Peninsula were used to analyse the shear wave velocity structure of the area. First, the phase velocity dispersion curves were obtained by the tau-p stacking method and the group velocity dispersion curves by a wavelet transform method and the Multiple Filtering Technique by Dziewonski. The phase velocity dispersion curves exhibited bigger errors than the group velocity curves. The results showed that the wavelet transform method was more effective in separating the fundamental and the 1st higher mode group velocity curves than the Multiple Filtering Technique. Combined use of the fundamental and the 1st higher mode group velocity dispersion curves in the inversion for the shear wave velocity structure gave better spatial resolution compared when the fundamental mode group velocity was used alone. This study indicates that the group velocity dispersion curves can be used in the inversion of Rayleigh waves for the shear wave velocity structure, especially effectively with the higher mode group velocity curves together.

  • PDF

Determination of phase velocity dispersion curve and group velocity using backward radiated leaky Lamb waves (후방복사 리키 램파를 이용한 위상속도 분산곡선과 군속도의 측정)

  • Kim Young H.;Song Sung-Jin;Chun Kwon Soo;Kwon Sung-Duk
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.529-534
    • /
    • 2002
  • 유도초음파는 얇은 판재와 다층재료를 평가하는데 널리 사용되는데, 이를 정량적으로 이용하기 위해서는 위상 및 군속도의 분산선도는 필수적이다. 본 연구에서는 후방복사 리키 램파를 이용하여 위상속도 분산곡선과 군속도를 측정하였다. 물에 잠긴 판재에 입사각을 변화 시키면서 판재에서 발생하는 후방복사 초음파 신호를 측정하였고, 후방복사된 초음파 신호는 유도초음파의 분산특성을 지님을 보였다. 입사각도와 수신된 파형의 주파수 분석을 통하여 램파의 위상속도 분산선도를 구하였다. 또한, 특정한 입사각에서 입사점을 변화시키면 서 론 파형의 시간대역 이동으로부터 군속도를 측정하였다.

  • PDF

The Determination of Group Velocity of Lamb Wave So Mode in Composite Plates with Anisotropy (이방성 복합재료 판에서 램파 $S_0$ 모드의 군속도 결정)

  • Rhee, Sang-Ho;Lee, Jeong-Ki;Lee, Jung-Ju
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.239-245
    • /
    • 2006
  • Experimentally measured Lamb wave group velocities in composite materials with anisotropic characteristics are not accorded with the theoretical group velocities as calculated with the Lamb wave dispersion equation. This discrepancy arises from the fact that the angle between the group velocity direction and the phase velocity direction in anisotropic materials exists. Wave propagation in a composite material with anisotropic characteristics should be considered with respect to magnitude in addition to direction. In this study, $S_0$ mode phase velocity dispersion corves are depicted with the variation of degree with respect to the fiber direction using a Lamb wave dispersion relation in the unidirectional, bidirectional, and quasi-isotropic composite plates. Slowness surface is sketched by the reciprocal value of the phase velocity curves. The magnitude and direction of the group velocity are calculated from the slowness surface. The theoretically determined group velocity, which is calculated from the slowness surface, Is compared with experimentally measured group velocities. The proposed method shows good agreements with theoretical and experimental results.

IMAGING THE UPPER CRUST OF THE KOREAN PENINSULA BY SURFACE WAVE TOMOGRAPHY (표면파 토모그래피를 이용한 한반도 상부지각의 이미지)

  • Cho, Kwang-Hyun;Herrmann, Robert B.;Lee, Kie-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.41-50
    • /
    • 2006
  • The crustal structure of Korean Peninsula have been investigated by analyzing group velocity dispersion data of surface wave. Cross.correlation of seismic background motions (Campillo and Paul, 2003; Shapiro et al., 2005) has been applied to estimate the short.period Rayleigh. and Love.wave group velocity dispersion characteristics of the region. Standard processing procedures were applied to the cross.correlation, except that signal whitening was used in place of one.bit sampling equalize power in signals from different times. Multiple.filter analysis was used to extract the group velocities from the estimate Green's functions, which were then use to image the spatially varying dispersion at periods between 0.5 and 20 seconds. The tomographic inversion technique used inverted all periods simultaneously to provide a smooth dispersion curve as a function of period in addition to the usual smooth spatial image for a given period. The Gyeongsang Basin in the southeastern part of the peninsula is clearly resolved with lower group velocities.

  • PDF

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

Time-Frequency Analysis of Dispersive Waves in Structural Members Under Impact Loads (시간-주차수 신호처리를 이용한 구조용 부재에서의 충격하중에 의한 분석 파동의 해석)

  • Jeong, H.;Kwon, I.B.;Choi, M.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.481-489
    • /
    • 2000
  • A time-frequency analysis method was developed to analyze the dispersive waves caused by impact loads in structural members such as beams and plates. Stress waves generated by ball drop and pencil lead break were recorded by ultrasonic transducers and acoustic emission (AE) sensors. Wavelet transform (WT) using Gabor function was employed to analyze the dispersive waves in the time-frequency domain, and then to find the arrival time of the waves as a function of frequency. The measured group velocities in the beam and the plate were compared with the predictions based on the Timoshenko beam theory and Rayleigh-Lamb frequency equations, respectively. The agreements were found to be very good.

  • PDF

Variation of the Group Velocity of Lamb Wave $S_o$ Mode with the Propagating Direction in the Laminated Unidirectional CFRP Plates (단일방향 탄소섬유복합재료 적층 판에서 전파 방향에 따른 램파 $S_o$ 모드의 군속도의 변화)

  • Kim Young H.;Lee Seung Seok;Kim Ho Chul;Lee Jeong Ki
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In this paper, the group velocity dispersion curves of the $S_o$ symmetric mode in unidirectional CFRP plate was calculated as varying the propagating direction. The group velocity curve was obtained with the group velocities of the $S_o$ symmetric mode corresponding to 0.2 MHz-mm under the first cut-off frequency in the dispersion curves, and corrected by introducing the slowness curve. The velocities of the $S_o$ symmetric mode in the unidirectional CFRP plate were measured as varying the propagating direction and compared with the col?rotted group velocity curve. The measured velocities were good agreement with the corrected group velocity curve except near the fiber direction which was called the cusp region. It implies that the direction of the group velocities incline toward the fiber direction of the unidirectional CFRP plates when the propagation direction is not accorded with the principal axis. It is supposed that this phenomenon rerults from the preferential propagating the energy toward the direction with the faster propagation velocity.

The S-wave Velocity Structure of Shallow Subsurface Obtained by Continuous Wavelet Transform of Short Period Rayleigh Waves (Continuous Wavelet Transform을 단주기 레일리파에 적용하여 구한 천부지반 S파 속도구조)

  • Jung, Hee-Ok;Lee, Bo-Ra
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.903-913
    • /
    • 2007
  • In this study, the researchers compared the S-wave velocity structures obtained by two kinds of dispersion curves: phase and group dispersions from a tidal flat located in the SW coast of the Korean peninsula. The ${\tau}-p$ stacking method was used for the phase velocity and two different methods (multiple filtering technique: MFT and continuous wavelet transform: CWT) for the phase velocity. It was difficult to separate higher modes from the fundamental mode phase velocities using the ${\tau}-p$ method, whereas the separation of different modes of group velocity were easily achieved by both MFT and CWT. Of the two methods, CWT was found to be more efficient than MFT. The spatial resolutions for the inversion results of the fundamental mode for both phase and group velocities were good for only a very shallow depth of ${\sim}1.5m$. On the other hand, the spatial resolutions were good up to ${\sim}4m$ when both the fundamental and the 1st higher mode poop velocities obtained by CWT were used for S-wave inversion. This implies that the 1st higher mode Rayleigh waves contain more information on the S-wave velocity in deeper subsurface. The researchers applied the CWT method to obtain the fundamental and the 1st higher mode poop velocities of the S-wave velocity structure of a tidal flat located in SW coast of the Korean peninsula. Thea the S-wave velocity structures were compared with the borehole description of the study area.

Fabrication of Balanced CPM(Colliding Pulse Mode-locked) Ring Dye Laser (Balanced CPM(Colliding Pulse Mode-locked) 링 색소 레이저 제작)

  • 정영붕;김동호;이인원
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.185-190
    • /
    • 1990
  • Balanced CPM ring dye laser was fabricated. Pulses as short as 62 fs were measured using noncollinear second harmonic generation autocorrelator. The optimum conditions were studied by changing the concentration of staturable absorber, pumping power of Ar+ laser and alignments of the intracavity four-prism sequence.

  • PDF

Propagation of surface polaritons at the interface of metal and left-handed metamaterial (금속과 왼손잡이 메타-물질의 경계면에서 형성되는 표면 폴라리톤의 전파 특성)

  • 윤재웅;송석호;오차환;김필수
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • At the interface of two materials with frequency-dependent material-parameters of permittivity and permeability, there may exist two kinds of surface polaritons: surface electric-polaritons(SEPs) and surface magnetic-polaritons(SMPs). Possible combinations of the material-parameters to support propagation of the two surface polaritons are suggested at the interface between metals and metamaterials such as a left-handed material. Dispersion relations are also derived in order to characterize frequency dependence of propagation of the SEP and SMP. It is found that only one propagation mode of SEP or SMP is allowed at a given set of four material parameters, and that counter-propagation of the phase and group velocities of the propagation mode can be observed even in the case when there are no double negative(or, negative-index) materials. Physical origin of the counter-propagation of the group velocity is proposed by evaluating the ratio of two electromagnetic-energy densities of a surface polariton propagating along within the two interface media, and it is confirmed by the dispersion relations.