DOI QR코드

DOI QR Code

The S-wave Velocity Structure of Shallow Subsurface Obtained by Continuous Wavelet Transform of Short Period Rayleigh Waves

Continuous Wavelet Transform을 단주기 레일리파에 적용하여 구한 천부지반 S파 속도구조

  • Jung, Hee-Ok (Department of Ocean System Engineering, Kunsan National University) ;
  • Lee, Bo-Ra (Department of Ocean System Engineering, Kunsan National University)
  • 정희옥 (군산대학교 해양과학대학 해양시스템공학과) ;
  • 이보라 (군산대학교 해양과학대학 해양시스템공학과)
  • Published : 2007.12.31

Abstract

In this study, the researchers compared the S-wave velocity structures obtained by two kinds of dispersion curves: phase and group dispersions from a tidal flat located in the SW coast of the Korean peninsula. The ${\tau}-p$ stacking method was used for the phase velocity and two different methods (multiple filtering technique: MFT and continuous wavelet transform: CWT) for the phase velocity. It was difficult to separate higher modes from the fundamental mode phase velocities using the ${\tau}-p$ method, whereas the separation of different modes of group velocity were easily achieved by both MFT and CWT. Of the two methods, CWT was found to be more efficient than MFT. The spatial resolutions for the inversion results of the fundamental mode for both phase and group velocities were good for only a very shallow depth of ${\sim}1.5m$. On the other hand, the spatial resolutions were good up to ${\sim}4m$ when both the fundamental and the 1st higher mode poop velocities obtained by CWT were used for S-wave inversion. This implies that the 1st higher mode Rayleigh waves contain more information on the S-wave velocity in deeper subsurface. The researchers applied the CWT method to obtain the fundamental and the 1st higher mode poop velocities of the S-wave velocity structure of a tidal flat located in SW coast of the Korean peninsula. Thea the S-wave velocity structures were compared with the borehole description of the study area.

천부지반에서 레일리파의 군속도와 위상속도 분산곡선을 역산하여 S파 속도구조를 구하는 방법을 비교하였다. 위상속도를 구하기 위해서 ${\tau}-p$ stacking 방법을 이용하였고, 군속도를 구하기 위해서 두 가지 방법, multiple filtering technique(MFT) continuous wavelet transform(CWT) 방법을 사용하였다. 고차모드가 존재하는 경우, 위상속도에서 기본모드와 고차모드를 분리하기가 용이하지 않았고, 군속도에서는 continuous wavelet transform 방법이 multiple filtering technique보다 효과적이었다. S파 속도 역산 결과, 위상속도와 군속도의 기본 모드만 역산할 경우, 신뢰구간의 깊이가 아주 얕았다. Continuous wavelet transform으로 구한 기본 모드와 1차 모드를 동시 역산할 경우, 신뢰구간의 깊이가 2배 이상 증가함을 알 수 있었다. 이는 1차 모드의 에너지가 더 깊은 층을 통과함으로 깊은 층에 대한 5파 속도 정보를 지니고 있기 때문으로 보인다. 위의 방법을 서해안 동호항의 조간대에 적용하여, continuous wavelet transform으로 구한 군속도의 기본 모드와 1차 모드를 동시 역산하여 S파 속도구조를 구하고, 해당 지역의 시추조사 결과와 비교하였다.

Keywords

References

  1. 동호어항 시설공사 지반조사 보고서, 1999, (주)지우엔지니어링
  2. 정희옥, 2003, 표면파 탐사 방법을 이용하여 구한 S파 속도와 시추결과의 비교 연구. 한국지구과학회지, 24(6), 549-557
  3. 정희옥, 2004, 다중채널 표면파 자료를 이용하여 구한 S파 속도와 감쇠지수 구조: 낙동강 하구의 연약 지반 특성. 한국지구과학회지, 25(8), 774-783
  4. Aki, K. and Richard, P.G., 1980, Quantitative seismology theory and methods. W.H. freedman and company, 700 p
  5. Dziewonski, A., Landisman, M., and Bloch S., 1969, A technique for the analysis of transient seismic signals. Bulletin of the seismological society of America, 59 (1), 427-444
  6. Forbriger, T., 2003, Inversion of shallow seismic wave fields: I. Wave field transformation. Geophysical Journal International, 153, 719-734 https://doi.org/10.1046/j.1365-246X.2003.01929.x
  7. Franklin, J.N., 1970, Well-posed stochastic extensions of ill-posed linear problems. Journal of Mathematical Analysis and Applications, 31, 682-716 https://doi.org/10.1016/0022-247X(70)90017-X
  8. Gabriels, P., Sneider, R., and Nolet, G., 1987, In situ measurement of shear wave velocity in sediments with higher mode Rayleigh waves. Geophysical Prospecting, 35, 187-196 https://doi.org/10.1111/j.1365-2478.1987.tb00812.x
  9. Geometries, 2000, SeisImager/2D: A software for seismic refraction survey. California, USA
  10. Herrmann. R.B., 1992, Computer programs in seismology, St, Louis University. Missouri
  11. Lai, C.G. and Rix G.J., 1998, Simultaneous inversion of Rayleigh phase velocity and attenuation near surface site characterization. Georgia Institute of Technology, Accessed 18, April, 2000, 258 p
  12. McMechan, G.A. and Yedlin, M.J., 1981, Analysis of dispersive waves by wave field transformation. Geophysics, 6, 869-874
  13. Miller, R.D., Xia, J., and Park, C.B., 1999, Multichannel analysis to surface waves to map bedrock. The Leading Edge, 18, 1392-1396 https://doi.org/10.1190/1.1438226
  14. O'Neill, A., 2003, Full-waveform Reflectivity for Modelling, Inversion and Appraisal of Seismic Surface Wave Dispersion in Shallow Site Investigations, Ph.D. Thesis, University of Western Australia School
  15. O'Neill, A. and Matsuoka, T., 2005, Dominant Higher Surface-wave Modes and Possible Inversion Pitfalls. Journal of Engineering and Environmental Geophysics, 10 (2), 185-201 https://doi.org/10.2113/JEEG10.2.185
  16. Park, C.B., Miller, R.D., and Xia, J., 1999, Multimodal Analysis of High Frequency Surface Waves. 1999 conference proceedings, The annual meeting of the Environmental and Engineering Geophysical Society, March 14-18, 115-121
  17. Polikar, R., 1999, The Engineer's Ultimate Guide to Wavelet Analysis; The Wavelet Tutorial Part III, Rowan University, http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html (검색일: 2007년 6월 30일)
  18. Yamada, T. and Yomogida, K., 1997, Group velocity measurement of surface waves by the wavelet transform. Journal of the Physics of the Earth, 45, 313-329 https://doi.org/10.4294/jpe1952.45.313

Cited by

  1. The Effect of Wavelet Pair Choice in the Compression of the Satellite Images vol.32, pp.6, 2011, https://doi.org/10.5467/JKESS.2011.32.6.575