• Title/Summary/Keyword: 구동 장치

Search Result 1,730, Processing Time 0.03 seconds

Implementation of a Communication Algorithm between Actuator Controller and Manufacturing System (제조 시스템과 제어기 사이의 통신알고리즘 구현에 관한 연구)

  • Jeong, Hwa-Young;Hong, Bong-Hwa;Kim, Eun-Won
    • 전자공학회논문지 IE
    • /
    • v.46 no.2
    • /
    • pp.46-52
    • /
    • 2009
  • The manufacturing system was used to communicate between controller and GUI system by RS232C. The controller is deal with processing the equipments such as cylinders, motors, sensors, and so on. The Gill system received the signal from actuator controller by direct communication ways, RS232C, and presented the data to user to analyze the all of status for manufacturing system. In this point, it is important that communication use the RS232C. The way is helpful to be able to reduce cost, have simple structure, and easily maintain the stable communication status. Otherwise, the way has some problem to loss signal or data under the high speed communication. So it needs to complement the communication process to without loss data. In this research, we made the communication algorithm and implement the process to reduce losing data when it send or receive the signal using RS232C between controller and manufacturing system.

Stress Detection of Railway Point Machine Using Sound Analysis (소리 정보를 이용한 철도 선로전환기의 스트레스 탐지)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Lee, Jonghyun;Chung, Yongwha;Kim, Hee-Young;Yoon, Sukhan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.433-440
    • /
    • 2016
  • Railway point machines act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Since point failure can significantly affect railway operations with potentially disastrous consequences, early stress detection of point machine is critical for monitoring and managing the condition of rail infrastructure. In this paper, we propose a stress detection method for point machine in railway condition monitoring systems using sound data. The system enables extracting sound feature vector subset from audio data with reduced feature dimensions using feature subset selection, and employs support vector machines (SVMs) for early detection of stress anomalies. Experimental results show that the system enables cost-effective detection of stress using a low-cost microphone, with accuracy exceeding 98%.

A simulation module to practice hydraulic mechanical governors and its adjustment characteristics for stability (유압기계식 거버너의 실습용 시뮬레이션 모듈과 안정도의 조정 특성)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.533-540
    • /
    • 2013
  • Prime movers in engine rooms inherently are much affected by the adjustment of their governors for the steady state and transient properties, consequently requiring that marine engineers shall be well familiar with the way to manage governor dials for normal operation. The hydro-mechanical governors basically have different control characteristics and adjustment parameters of stability from digital governors. The former include compensation mechanism using dash pot while the control algorithm of the latter is usually based on the PID action. This study is for configuring a simulation module to let trainees practice how to adjust dials for stability on hydraulic governors in the view that the practice by real governors and engines is time consuming and high cost for operation. The governor module includes the adjusting points such as speed set, speed droop, needle valve and compensation pointer with engine module of $2^{nd}$ order coupled. The results of simulation showed satisfactory responses as a training tool for the adjustment of control parameters.

Conceptual Design for Lifetime Test System for LED Headlamps on Rolling Stock (철도차량용 LED전조등의 수명시험 장치 구축을 위한 개념설계)

  • Ohn, Jung-Ghun;Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2015
  • LED luminaires as a lighting system have attracted much research attention due to their high efficiency and long lifetimes. However, disappointing outcomes have been noted in terms of performance levels and lifetimes as compared to desired system requirements in practice due to certain electrical and thermal characteristics of LEDs. LM-80 and TM-21 established by IESNA are the best known standards for lifetime test procedures and estimation techniques. However, they only handle LED light sources without guaranteeing the LED luminaire in a reliability test. They also operate for more than 6,000 hours and undergo various stresses, such as the operating current and temperature. Therefore, a lifetime standard for LED luminaires has not yet been established. This paper proposes a conceptual design of a lifetime test system for LED headlamps depending on the operating environment. Eventually, this method can assist with evaluations of the validity of lifetime standard tests of LED headlamps.

Investigation of a Thermal Analysis Method for IPMSM in Railway Vehicles (철도차량용 영구자석 동기전동기의 열해석 기법 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.99-103
    • /
    • 2013
  • In this paper, research on the thermal analysis method is reported for the characterization of heat generation while operating an Interior Permanent Magnet Synchronous Motor (IPMSM) for railway vehicles. Efficient cooling of the heat generated in the IPMSM is important because the excessive heat generated from the winding, core and permanent magnets increases the difficulty of continuously operating an IPMSM over long time periods. Therefore, in this study, in order to analyze the heat generation characteristics of the IPMSM for advanced research in the application of IPMSMs to cooling devices, the heat transfer coefficients for each component of the IPMSM were derived and the thermal equivalent circuit was configured to perform thermal analyses. Finally, the validation of the suggested thermal analysis method was performed through comparison with the heat experimental data of an IPMSM prototype.

A Study on Erosion Structure Properties for Thermal Insulation Materials on Carbon-Carbon Composites and Graphite Nozzle Throat (C-C 복합재료와 Graphite 노즐목 내열재의 침식조직 특성에 대한 연구)

  • Kim, Young In;Lee, Soo Yong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-49
    • /
    • 2017
  • The solid rocket motor(SRM) consists of a motor case, igniter, propellants, nozzle, insulation, controller, and driving device. The liquid rocket propulsion systems(LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. The nozzle of SRM is high temperature condition and high velocity condition so occurs the erosion by combustion gas. This erosion occurs the change of nozzle throat and reduces thrust performance of rocket. The material of Rocket nozzle is minimization of erosion and insulation effect and endure the shear force, high temperature and high pressure. The purpose of this study is to investigate the erosion characteristics of solid rocket nozzles by each combustion time. Through the structure inspection of Graphite and C-C composite, identify the characteristics of the microstructure before and after erosion.

Study on Dynamic Characteristics and Performance of Tip Jet Rotor Using Small-scaled Rotor (축소로터를 이용한 Tip Jet 로터의 성능 및 동특성 연구)

  • Kwon, Jae Ryong;Baek, Sang Min;Rhee, Wook;Lee, Jae Ha
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.30-36
    • /
    • 2018
  • In this study, a small-scaled test system for a tip jet rotor was developed to contribute to the research on unmanned compound rotorcraft. The performance and dynamic characteristics of the tip jet rotor were investigated using the test system. The diameter of the tip jet rotor was set to 2m in consideration of the size of the test site and the pneumatic supply capacity of the. The rotating speed of the rotor was controlled by the pressure of the compressed air. The thrust and forces during the rotor rotation were measured using a load measuring device. A hydraulic actuator was installed for the dynamic test and full-bridge strain gages were attached to the root of each blade to measure the flap, lag, and torsion-wise responses generated when the rotor is excited by the actuator. The performance and dynamic characteristic tests were conducted at various rotor speeds and blade pitches. In order to check the validity of the test results, the results were also compared with the CAMRAD II analysis.

Development and Case Review of IT Convergence GoGo Bumper Car Project (IT융합 기반의 고고범퍼카 콘텐츠 개발 및 프로젝트 적용 사례)

  • Park, Hong-Joon;Jun, Young-Cook
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.2
    • /
    • pp.21-33
    • /
    • 2015
  • This paper aims at developing IT convergence robot education contents using open hardware-based GoGo Board and presenting three cases that were applied into educational settings with elementary and middle school students. Several types of data for their activities were collected: photos, work output, survey data, video data and interview with robot teacher and students. Each student experienced building up a GoGo Bumper Car with touch sensors attached at front and back sides and figuring out the principle of digital board control and operating of electronic devices by sensing. The participants, in the following phases, conducted domino chain-reaction with GoGo Bumper Cars and acquiring GoGo Driving Licence by driving test on three different road maps. Students in a gifted education program creatively implemented their own ideas as part of robotic art. The result of case analysis showed that the proposed project provides students not only intimacy for technology, fun, concentration but her own empowerment for developing ideas and creative implementation.

Development of A Computer Program for Drop Time and Impact Velocity of the Rod Cluster Control Assembly (제어봉집합체의 낙하시간과 충격속도 계산을 위한 프로그램 개발)

  • Park, Ki-Seong;Kim, Il-Kon
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.197-204
    • /
    • 1994
  • In a PWR rod cluster control assembly(RCCA) for shutdown is released upon action of control rod drive mechanism and falls down through the guide thimble by its weight. Drop time and impact velocity of the RCCA are two key parameters with respect to reactivity insertion time and the mechanical integrity of fuel assembly. Therefore, the precise control of drop time and impact velocity is prerequisite to modifying the existing design features of the RCCA and guide thimble or newly designing them. During its falling down into the core, the RCCA is retarded by various forces acting on it such as fluid resistance caused by the RCCA movement, buoyance and mechanical friction caused by contacting inner surface of the guide thimble, etc. However, complicated coupling of the various forces makes it difficult to derive an analytical dynamic equation for the drop time and impact velocity. This paper deals with the development of a computer program containing an analytical dynamic equation applicable to the Korean Fuel Assembly(KOFA). The computer program is benchmarked with an available single control rod drop tests. Since the predicted values are in good agreement with the test results, the computer program developed in this paper can be employed to modify the exiting design features of the RCCA and guide thimble and to develope their new design features for advanced nuclear reactors.

  • PDF

An Experimental Study on the Ventilation Characteristics of a Wind-Turbine Natural Ventilator According to the Outdoor-Wind Velocity and the Indoor/Outdoor-Temperature Difference (윈드터빈 자연환기 장치의 외기풍속 및 온도차에 따른 환기특성에 관한 실험연구)

  • Han, Dong-Hun;Kim, Yeong-Sik;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • With the improvement of living standards, the ventilation for the mitigation of indoor or outdoor air-pollution problems has recently attracted a lot of attention. Consequently, the ventilation for the supply of outdoor fresh air into a room is treated as an important building-design factor. The ventilation is generally divided into the forced and natural types; here, the former can control the ventilation rate by using mechanical devices, but it has the disadvantages of the equipment costs, maintenance costs, and noise generation, while the latter is applied to most workshops due to the absence of noise and the low installation and maintenance costs. In this experimental study, the ventilation performance of a typical rotating-type natural ventilator, which is called a "wind turbine," was investigated with the outdoor-wind velocity and the indoor/outdoor-temperature difference. From the experiment results, it was confirmed that the temperature difference of $10^{\circ}C$ corresponds to the ventilation driving force with an outdoor-wind velocity of 1.0 m/s. Additionally, the intake-opening area of a building also exerts a great effect on the ventilation rates.