• Title/Summary/Keyword: 고성능 콘크리트의 내화

Search Result 24, Processing Time 0.03 seconds

A Study on the Properties of Fire Endurance and Spalling of High Performance RC Column with the Finishing and Covering Material (고성능 RC 기둥의 마감재 변화에 따른 폭열 및 내화특성에 관한 연구)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Ji, Suk-Won;Kim, Kyoung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.143-152
    • /
    • 2006
  • High performance concrete(HPC) has been widely used in high-rise building. The HPC has several benefits including high strength, high fluidity and high durability. However, spalling is susceptible to occur in HPC and HPC also tends to be deteriorated in the side of fire resistance performance at fire. This paper investigated the spalling prevention of high performance RC column. Control concrete showed severe failure and a case of concrete with fire enduring spraying material exhibited more severe spalling failure than even control concrete. In addition, concrete with fire enduring paint reported the most favorable spalling resistance effect for preventing spall, compared with other concrete covered with finishing materials, such as fire enduring spraying material, gypsum board, marble board and fire enduring PC board. Meanwhile, concrete adding 0.1% of PP fiber demonstrated spalling resistance performance after 3hours load bearing test.

Properties of rin Resistance of High Performance Concrete with Varying Contents of Polypropylene Fiber and Specimen Size (폴리프로필렌 섬유의 혼입률 및 부재크기 변화에 따른 고성능 콘크리트의 내화 특성)

  • 한천구;양성환;이병열;황인성;전선천
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.449-456
    • /
    • 2002
  • Recently, the application of high strength and high performance concrete has been gradually increased as an important construction material for high rise and huge scaled construction. However, high performance concrete has undesirable characteristics of spalling subjected to high temperature due to its dense microstructure content. A spalling by fire brings surface failure and falling off concrete member. It is considered that spalling by fire should be taken into account for the safety of the concrete structure under fire. Therefore, in this paper, tests are carried out using high performance concrete containing polypropylene(PP) fiber in order to improve the fire resistance performance. PP fiber contents and member sizes are varied. According to experimental results, as for the influence of PP fiber contents, all the test specimens without PP fiber show entire failure in W/C of 35%, while they show nearly sound shape except some kinds of surface fracture in W/C of 55%. When PP fiber is contained more than 0.07%, favorable prevention effects of spatting by fire are obtained. As for the effects of test specimens size, it tends to increase the possibilities of spatting by fire as test specimens become larger. And spatting by fire at the edge of test specimens occurs more frequently than at the surface of test specimens. Residual compressive and tensile strength shows 45∼65 % of its original strength at W/C of 35%, and 30∼40% at W/C of 55 %.

Fire Resistance of High Performance Concrete(High Strength Concrete & Fiber Reinforced Concrete) (고성능 콘크리트의 내화성능(고강도 및 섬유보강 콘크리트))

  • 소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.37-44
    • /
    • 2002
  • 콘크리트의 내화성능에 대한 다각적인 연구가 1970년대부터 원자로의 안정성 확보차원에서 진행되어 왔으며 특히 콘크리트의 취성파괴(brittle failure)등에 대한 연구가 많다. 콘크리트의 내화성이란 화재로부터 보호되고 고열환경에 견디는 재료적 특성 즉 화재온도 1,00$0^{\circ}C$ 정도의 고온을 30분에서 3시간 정도를 받은 경우 콘크리트 중에 매립된 철근 등 철강을 소정의 온도 이하고 유지하기 위한 피복 역할을 유지하면서 구조물의 큰 변형이나 붕괴 등을 막기 위한 소요 압축강도 및 영계수 등의 성능을 가지고 있는 성질을 말한다.(중략)

Countermeasure and Spalling Property of High Performance Concrete (고성능 콘크리트의 폭렬특성 및 대책)

  • Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1105-1108
    • /
    • 2008
  • This paper investigated measures of spalling prevention and mechanism to secure stability of subjected to a fire circumstance. The results were summarized as following. 1) There were 4 kinds of methods for spalling prevention, such as declining percentage of water content and cement water ratio, isolating from high temperature with fire proof covering, giving lateral resistance stress, and discharging vapor pressure using fibers. 2) It was confirmed that methods using fibers to a new construction and fire proof covering to a existing construction on the basis of investigation for the spalling mechanism through the existing theory of spalling and a new theory of WPB.

  • PDF

Trends of Research and Practical Use on Explosive Spalling Properties and Performance Based of Structural Design of the High-Strength Concrete (고강도콘크리트의 폭렬대책공법에 대한 국내외 현황과 성능적 구조내화설계를 위한 과제)

  • Kwon, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.935-940
    • /
    • 2008
  • When reinforced concrete is subjected to high temperature as in fire, there is deterioration in its properties of particular importance are loss in compressive strength, cracking and spalling of concrete, destruction of the bond between the cement paste and the aggregates and the gradual deterioration of the hardend cement paste. Assessment of fire-damaged concrete usually starts with visual observation of color change, cracking and spalling of the surface. In this paper, it was reported the trends of research and practical use on the Explosive Spalling Properties and Performance Based of Structural Design of the High-Strength Concrete.

  • PDF

Spatting and Fire Enduring Properties of High Strength RC Column Subjected to Axial Load Depending on Fiber Contents (중심 축하중을 받는 고강도 RC기둥의 섬유 혼입량에 따른 폭열 및 내화 성상)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Lee, Jae-Sam;Kim, Kyoung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.83-90
    • /
    • 2006
  • This paper investigates experimentally the fire resistance performance and spatting resistance of high performance reinforced concrete column member subjected to fire containing polypropylene fiber(PP fiber) and cellulose fiber(CL fiber). An increase in PP fiber and CL fiber contents, respectively resulted in a reduction of fluidity due to fiber ball effect. Air content is constant with m increase in fiber content. Compressive strength reached beyond 50 MPa. Based on fire resistance test, severe failure occurred with control concrete specimen, which caused exposure of reinforcing bar. No spall occurred with specimen containing PP fiber. This is due to the discharge of internal vapour pressure. Use of CL fiber superior to control concrete in the side of spatting resistance, localized failure at comer of specimen was observed. Corner of specimen had deeper neutralization than surface of specimen. Specimen containing PP fiber had the least damaged area due to spatting. Neutralization depth ranged between 6 and 8 mm Residual compressive strength of specimen containing PP fiber maintained 40%, which is larger than control concrete with 20% of residual strength. Specimen containing CL fiber had 25% or residual strength.