• Title/Summary/Keyword: 계면 반응

Search Result 910, Processing Time 0.023 seconds

Interfacial Reaction and Mechanical Property of BGA Solder Joints with LTCC Substrate (LTCC기판과 BGA 솔더접합부의 계면반응 및 기계적 특성)

  • Yoo, Choong-Sik;Ha, Sang-Su;Kim, Bae-Kyun;Jang, Jin-Kyu;Seo, Won-Chan;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.202-208
    • /
    • 2009
  • The effects of aging time on the microstructure and shear strength of the Low Temperature Co-fired Ceramic (LTCC)/Ag pad/Electroless Nickel Immersion Gold (ENIG)/BGA solder joints were investigated through isothermal aging at $150^{\circ}C$ for 1000 h with conventional Sn-37Pb and Sn-3Ag-0.5Cu. $Ni_3Sn_4$ intermetallic compound (IMC) layers was formed at the interface between Sn-37Pb solder and LTCC substrate as-reflowed state, while $(Ni,Cu)_3Sn_4$ IMC layer was formed between Sn-3Ag-0.5Cu solder and LTCC substrate. Additional $(Cu,Ni)_6Sn_5$ layer was found at the interface between the $(Ni,Cu)_3Sn_4$ layer and Sn-3Ag-0.5Cu solder after aging at $150^{\circ}C$ for 500 h. Thickness of the IMC layers increased and coarsened with increasing aging time. Shear strength of both solder joints increased with increasing aging time. Failure mode of BGA solder joints with LTCC substrate after shear testing revealed that shear strength of the joints depended on the adhesion between Ag metallization and LTCC. Fracture mechanism of Sn-37Pb solder joint was a mixture of ductile and pad lift, while that of Sn-3Ag-0.5Cu solder joint was a mixture of ductile and brittle $(Ni,Cu)_3Sn_4$ IMC fracture morphology. Failure mechanisms of LTCC/Ag pad/ENIG/BGA solder joints were also interpreted by finite element analyses.

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance (기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.68-74
    • /
    • 2021
  • Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.

Interfacial Reaction between Spark Plasma Sintered High-entropy Alloys and Cast Aluminum (고엔트로피합금 분말야금재와 알루미늄 주조재 사이의 계면 반응 연구)

  • Kim, Min-Sang;Son, Hansol;Jung, Cha Hee;Han, Juyeon;Kim, Jung Joon;Kim, Young-Do;Choi, Hyunjoo;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.213-218
    • /
    • 2022
  • This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al-Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.

A Study on Alumina Nanoparticle Dispersion for Improving Injectivity and Storativity of CO2 in Depleted Gas Reservoirs (고갈 가스전에서 CO2 주입성 및 저장성 향상을 위한 알루미나 나노입자의 분산 특성 연구)

  • Seonghak Cho;Chayoung Song;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • In this study, the Al2O3 nanofluid was synthesized as an additive for improving the injection efficiency and storage capacity of carbon dioxide (CO2) in a depleted sandstone reservoir or deep saline aquifer. As the base fluid, deionized water (DIW) and saline prepared by referring to the composition of API Brine were used, and the fluid was synthesized by using Al2O3 nanofluid with CTAB (cetyltrimethyl-ammonium bromide), a cationic surfactant. After that, the dispersion stability was evaluated by using visual observation, dynamic light scattering (DLS), transmission electron microscope (TEM), and miscibility test. As a result, it was presented that stable nanofluid without agglomeration and precipitation after reaction with 70,000 ppm of brine could be synthesized when the nanoparticle concentration was 0.05 wt% or less.

The Effect of Electrochemical Treatment in Lowering Alkali Leaching from Cement Paste to an Aquatic Environment: Part 2- Microscopic Observation (전기화학적 기법을 통한 시멘트페이스트의 수중노출에 따른 알칼리이온 침출저감 효과: Part 2- 미세구조 분석)

  • Bum-Hee Youn;Ki-Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.145-152
    • /
    • 2023
  • In this study, microscopic observation was made on the surface of cement paste immersed in an aquatic environment for 100 days at electrochemical treatment to mitigate the leaching of alkali ions. To quantitatively rank the hydration products, unhydrated grains and porosity in the interfacial region, the backscattered electron(BSE) images were obtained by scanninng electron microscopy. As a result, it was found that the porosity on the surface was significantly reduced by the electrochemical treatment, while unhydrated grains were more or less increased presumably limited hydration reaction under electric charge. At electrochemical treatment, Ca2+ ions present in C-S-H gel could be precipitated with OH- to form Ca(OH)2 then to lower C-S-H gel and simultaneously to enhance Ca(OH)2. Substantially, the risk of alkali leaching could be lowered by the limited ionized matrix under electrochemical treatment.

Fabrication of Aluminum Nitride Reinforced Aluminum Matrix Composites via Plasma Arc Melting under Nitrogen Atmosphere (플라즈마 아크 용해 공정으로 자발합성된 질화알루미늄 강화 알루미늄기지 복합재료의 개발)

  • Sujin Jeong;Je In Lee;Eun Soo Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2023
  • In this study, aluminum nitride (AlN) reinforced aluminum (Al) matrix composites are fabricated via plasma arc melting under a nitrogen atmosphere. Within a minute of the chemical reaction between Al and N, dispersed AlN with the shape of transient and lamellar layers is in situ formed in the Al matrix. The composite contains 10 vol.% AlN reinforcements with low thermal resistance and strong bonding at the interfaces, which leads to the unique combination of thermal expansivity and conductivity in the resulting composites. The coefficient of thermal expansion of the composite can be further reduced when Si was alloyed into the Al matrix, which proposes the potential of the in situ Al matrix composites for thermal management applications.

Study for the separation and comparison of azo dyes and their diazo components (아조염료와 디아조 성분의 분리 및 비교에 관한 연구)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.50-57
    • /
    • 2006
  • Well known environmental wastes from dye industry were separated by the micellar electrokinetic capillary chromatography(MECC). These wastes include H-acid modifier and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. The results of the separation were compared with the result obtained by the HPLC using ion-pairing mechnism. MECC method was also applied to separate a few direct dyes including Direct Blue 2, Direct Blue 6 and Direct Blue 15, and reactive dye such as Reactive Orange 4. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid which are used as diazo components of the typical azo dyes. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.

Analysis of dye components using MECC and ion-pairing chromatography (MECC법과 Ion-Pairing 크로마토그래피법을 이용한 염료성분의 분석)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Micellar electrokinetic capillary chromatography(MECC) and HPLC with ion-pairing mechanism were applied for the separation of the well known environmental wastes from dye industry. These compounds include H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. MECC method was also applied to separate few acid dyes including Acid Orange 7, Acid Orange 5 and Acid Blue 92 and direct dye such as Direct Red 80. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of a given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.

Determination of Adsorption Isotherms of Hydrogen at an Ir Electrode Interface Using the Phase-Shift Method and Correlation Constants (Ir 전극 계면에서 위상이동 방법 및 상관계수를 이용한 수소의 흡착동온식 결정)

  • Jeon, Sang-K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2007
  • The phase-shift method and correlation constants for studying a linear relationship between the behavior ($-{\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and that (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}\theta{\geq}0$) have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) at noble metal/aqueous electrolyte interfaces. At an Ir/0.1 M KOH aqueous electrolyte interface, the Langmuir and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=3.3{\times}10^{-4}\;mol^{-1}$ for the Langmuir and $K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}$ for the Temkin adsorption isotherm), interaction parameter (g = 4.6 for the Temkin adsorption isotherm), and standard free energies (${\Delta}G_{ads}^0=19.9kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-4}\;mol^{-1}$ and $16.5<{\Delta}G_{\theta}^0<23.3\;kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}\;and\;0.2<\theta<0.8$) of H for the cathodic $H_2$ evolution reaction are determined using the phase-shift method and correlation constants. The inhomogeneous and lateral interaction effects on the adsorption of H are negligible. At the intermediate values of ${\theta},\;i.e,\;0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms (${\theta}\;vs.\;E$) and related electrode kinetic and thermodynamic parameters(K, g, ${\Delta}G_{ads}^0, {\Delta}G_{\theta}^0$).

Liposome Formation and Active Ingredient Capsulation on the Supercritical Condition (초임계 상태에서 리포좀의 생성 및 약물봉입)

  • Mun, Yong-Jun;Cha, Joo-Hwan;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1687-1698
    • /
    • 2021
  • This study is to produce multiple layers of liposomes in a supercritical state and encapsulates active ingredients in order to stably encapsulate thermodynamically unstable active ingredients. In order to form a liposome in a supercritical state, a mixed surfactant development including vegetable-derived hydrogenated phosphatidyl choline and their delivative, hydrogenated sucrose distearate was synthesized as high purity. It describes a manufacturing method of injecting liquid carbon dioxide into a reactor to create a supercritical state and stirring to produce a giant liposome, and adding and loading genistein and quercetin. The HLB of the mixed lipid complex (SC-Lipid Complex) was 12.50, and multiple layers of liposome vesicles were formed even at very low concentrations. This surfactant had a specific odor with a pale yellow flake, the specific gravity was 0.972, and the acid value was 0.12, indicating that it was synthesized with high purity. As a result of the emulsifying capacity experiment using 20 wt% capric/capric triglyceride and triethylhexanoin using SC-Lipid Complex, it was found to have 96.2% emulsifying power. SC LIPOSOME GENISTEIN was confirmed that a multi-layer liposome vesicle was formed through a transmission electron microscope (Cryo-TEM) for the supercritical liposome encapsulated with genistein. The primary liposome particle size in which genistein was encapsulated was 253.9 nm, and the secondary capsule size was 18.2 ㎛. Using genistein as the standard substance, the encapsulation efficiency of supercritical liposomes was 99.5%, and general liposomes were found to have an efficiency of 93.6%. In addition, the antioxidant activity experiment in which quercetin was sealed was confirmed by the DPPH method, and it was found that the supercritical liposome significantly maintained excellent antioxidant activity. In this study, thermodynamically unstable raw materials were sealed into liposomes without organic solvents in a supercritical state. Based on these results, it is expected that it can be applied to various forms such as highly functional skincare cosmetics, makeup cosmetics, and scalp protection cosmetics.