Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.3.213

Interfacial Reaction between Spark Plasma Sintered High-entropy Alloys and Cast Aluminum  

Kim, Min-Sang (Metallic Material R&D Center, Korea Automotive Technology Institute)
Son, Hansol (School of Materials Science and Engineering, Kookmin University)
Jung, Cha Hee (School of Materials Science and Engineering, Kookmin University)
Han, Juyeon (School of Materials Science and Engineering, Kookmin University)
Kim, Jung Joon (School of Materials Science and Engineering, Kookmin University)
Kim, Young-Do (Department of Materials Science & Engineering, Hanyang University)
Choi, Hyunjoo (School of Materials Science and Engineering, Kookmin University)
Kim, Se Hoon (Metallic Material R&D Center, Korea Automotive Technology Institute)
Publication Information
Journal of Powder Materials / v.29, no.3, 2022 , pp. 213-218 More about this Journal
Abstract
This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al-Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.
Keywords
Aluminum alloy; High entropy alloys; Reinforcement; Metal matrix composite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. A. Starke Jr and J. T. Staley: Prog. Aerosp. Sci., 32 (1996) 131.   DOI
2 M. S. Kim, D. Y. Kim, Y. D. Kim, H. J. Choi and S. H. Kim: Arch. Metall. Mater., 66 (2021) 3.
3 J. Hirsch and T. Al-Samman: Acta Mater., 61 (2013) 818.   DOI
4 L. Kloc, S. Spigarelli, E. Cerri, E. Evangelista and T. G. Langdon: Metall. Mater. Trans. A, 27 (1996) 3871.   DOI
5 F. Czerwinski, W. Kasprzak, D. Sediako, D. Emadi, S. Shaha, J. Friedman and D. Chen: Adv. Mater. Process, 174 (2016) 16.
6 S. M. Shin, D. H. Lee, Y. H. Lee, S. M. Ko, H. J. Park, S. B. Lee, S. C. Cho, Y. D. Kim, S. K. Lee and I. J. Jo: Metals, 9 (2019) 1108.   DOI
7 B. Schuh, F. Mendez-Martin, B. Volker, E. P. George, H. Clemens, R. Pippan and A. Hohenwarter: Acta Mater., 96 (2015) 1.   DOI
8 K. D. Kim, B. C. Zhou and C. Wolverton: Scr. Mater., 159 (2019) 99.   DOI
9 Y. Liu, J. Chen, Z. Li, X. Wang, X. Fan and J. Liu: J. Alloy. Compd., 780 (2019) 558.   DOI
10 C. W. Park, J. M. Byun, W. J. Choi and Y. D. Kim: J. Powder Mater., 26 (2019) 101.   DOI
11 A. Takeuchi and A. Inoue: Mater. Trans., 41 (2000) 11.
12 H. M. Hu, E. J. Lavernia, W. C. Harrigan, J. Kajuch and S. R. Nutt: Mater. Sci. Eng. A, 297 (2001) 94.   DOI
13 E. A. Starke and J. T. Staley: Prog. Aerosp. Sci., 32 (1996) 131.   DOI
14 L. Y. Chen, J. Q. Xu, H. S. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J. M. Yang, S. Mathaudhu and X. C. Li: Nature, 528 (2015) 539.   DOI
15 Z. Yuan, W. Tian, F. Li, Q. Fu, Y. Hu and X. Wang: J. Alloy. Compd., 806 (2019) 901.   DOI
16 J. L. Murray: Int. Met. Rev., 30 (1985) 211.   DOI
17 C. Y. Hsu, T. S. Sheu, J. W. Yeh and S. K. Chen: Wear, 268 (2010) 5.
18 S. W. Chee, Z. M. Wong, Z. Baraissov, S. F. Tan, T. L. Tan and U. Mirsaidov: Nat. Commun., 10 (2019) 2831.   DOI
19 A. D. Smigelskas and E. O. Kirkendall: Trans. AIME., 171 (1947) 130.