Browse > Article
http://dx.doi.org/10.14478/ace.2020.1106

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance  

Kim, Junseob (School of Chemical Engineering, University of Ulsan)
Kim, Junbom (School of Chemical Engineering, University of Ulsan)
Publication Information
Applied Chemistry for Engineering / v.32, no.1, 2021 , pp. 68-74 More about this Journal
Abstract
Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.
Keywords
PEMFC; Gas diffusion layer; Compression ratio; Polarization curve;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. J. Mason, J. Millichamp, T. P. Neville, A. El-kharouf, B. G. Pollet, and D. J. L. Brett, Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells, J. Power Sources, 219, 52-59 (2012).   DOI
2 R. Banerjee, J. Hinebaugh, H. Liu, R. Yip, N. Ge, and A. Bazylak, Heterogeneous porosity distributions of polymer electrolyte membrane fuel cell gas diffusion layer materials with rib-channel compression, Int. J. Hydrog. Energy, 41, 14885-14896 (2016).   DOI
3 C Totzke, G. Gaiselmann, M. Osenberg, T. Arlt, H. Markotter, A. Hilger, A. Kupsch, B.R. Mülle, V. Schmidt, W. Lehnert, and I. Manke, Influence of hydrophobic treatment on the structure of compressed gas diffusion layers, J. Power Sources, 324, 625-636 (2016).   DOI
4 J. Lee, R. Yip, P. Antonacci, N. Ge, T. Kotaka, Y. Tabuchi, and A. Bazylak, Synchrotron investigation of microporous layer thickness on liquid water distribution in a PEM fuel cell, J. Electrochem. Soc., 162, F669-F676, (2015).   DOI
5 P. Deevanhxay, T. Sasabe, S. Tsushima, and S. Hirai, Effect of liquid water distribution in gas diffusion media with and without microporous layer on PEM fuel cell performance, Electrochem. Commun., 34, 239-241, (2013).   DOI
6 F. S. Nanadegani, E. N. Lay, and B. Sunden, Effects of an MPL on water and thermal management in a PEMFC, Int. J. Energy Res., 43, 274-296 (2019).   DOI
7 J. Lee, S. Chevalier, R. Banerjee, P. Antonacci, N. Ge, R. Yip, T. Kotak, Y. Tabuchi, and A. Bazylak, Investigating the effects of gas diffusion layer substrate thickness on polymer electrolyte membrane fuel cell performance via synchrotron X-ray radiography, Electrochim. Acta, 236, 161-170 (2017).   DOI
8 T. Kim, S. Lee, and H. Park, A study of water transport as a function of the micro-porous layer arrangement in PEMFCs, Int. J. Hydrog. Energy, 35, 8631-8643 (2010).   DOI
9 M. Blanco and D. P. Wilkinson, Investigation of the effect of microporous layers on water management in a proton exchange membrane fuel cell using novel diagnostic methods, Int. J. Hydrog. Energy, 39, 16390-16404 (2014).   DOI
10 J. Ge, A. Higier, and H. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance, J. Power Sources, 159, 922-927 (2006).   DOI
11 W. R. Chang, J. J. Hwang, F. B. Weng, and S. H. Chan, Effect of clamping pressure on the performance of a PEM fuel cell, J. Power Sources, 166, 149-154, (2007).   DOI
12 E. Khetabi, K. Bouzianea, N. Zamel, X. Francois, Y. Meyer, and D. Candusso, Effects of mechanical compression on the performance of polymer electrolyte fuel cells and analysis through in-situ characterisation techniques - A review, J. Power Sources, 424, 8-26 (2019).   DOI
13 N. Khajeh-Hosseini-Dalasm, T. Sasabe, T. Tokumasu, and U. Pasaogullari, Effects of polytetrafluoroethylene treatment and compression on gas diffusion layer microstructure using high-resolution X-ray computed tomography, J. Power Sources, 266, 213-221 (2014).   DOI
14 J. H. Lin, W. H. Chen, Y. J. Su, and T. H. Ko, Effect of gas diffusion layer compression on the performance in a proton exchange membrane fuel cell, Fuel, 87, 2420-2424 (2008).   DOI
15 E. Carcadea, M. Varlam, D. B. Ingham, L. G. Patularu, A. Marinoiu, D. Ion-Ebrasu, and I. Stefanescu, Effect of GDL(+MPL) compression on the PEM fuel cell performance, J. Electrochem. Soc., 75, 167-177 (2016).
16 C. Simon, F. Hasche, and H. A. Gasteiger, Influence of the gas diffusion layer compression on the oxygen transport in PEM fuel cells at high water saturation levels, J. Electrochem. Soc., 164, F591-F599 (2017).   DOI
17 U. U. Ince, H. Markotter, M. G. George, H. Liu, N. Ge, J. Lee, S. S. Alrwashdeh, R. Zeis, M. M. Messerschmidt, J. Scholta, and A. Bazylak, Effects of compression on water distribution in gas diffusion layer materials of PEMFC in a point injection device by means of synchrotron X-ray imaging, Int. J. Hydrog. Energy, 43, 391-406 (2018).   DOI
18 M. G. Santarelli and M. F. Torchio, Experimental analysis of the effects of the operating variableson the performance of a single PEMFC, Energy Convers. Manag., 48, 40-51.(2007).   DOI
19 Y. Wu, J. I. S. Cho, X. Lu, L. Rasha, T. P. Neville, J. Millichamp, R. Ziesche, N. Kardjilov, H. Markotter, P. Shearing, and D. J. L. Bretta, Effect of compression on the water management of polymer electrolyte fuel cells: An in-operando neutron radiography study, J. Power Sources, 412, 597-605 (2019).   DOI
20 L. Wang, A. Husar, T. Zhou, and H. Liu, A parametric study of PEM fuel cell performances, Int. J. Hydrog. Energy, 28, 1263-1272 (2003).   DOI
21 S. Haji, Analytical modeling of PEM fuel cell i-V curve, Renew. Energ., 36, 451-458 (2011).   DOI
22 D. Hao, J. Shen, Y. Hou, Y. Zhou, and H. Wang, An improved empirical fuel cell polarization curve model based on review analysis, Int. J. Chem. Eng., 16, 1-10 (2016).
23 J. Kim, S. Lee, and S. Srinivasan, Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Electrochem. Soc., 8, 2670-2674 (1995).
24 S. D. Fraser and V. Hacker, An empirical fuel cell polarization curve fitting equation for small current densities and no-load operation, J. Appl. Electrochem., 38, 451-456 (2008).   DOI