• Title/Summary/Keyword: {2}-inverse of A

Search Result 1,950, Processing Time 0.027 seconds

A Study on the Inverse Calibration of Industrial Robot(AM1) Using Neural Networks (신경회로망을 이용한 산업용 로봇(AM1)의 역보정에 관한 연구)

  • 안인모
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.131-136
    • /
    • 1999
  • This paper proposes the robot inverse calibration method using a neural networks. A highorder networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position, orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from $\pm$2$^{\circ}$to $\pm$ 0.1$^{\circ}$.

  • PDF

Variational Data Assimilation for Optimal Initial Conditions in Air Quality Modeling

  • Park, Seon-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E2
    • /
    • pp.75-81
    • /
    • 2003
  • Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition rates. In this paper. two advanced techniques for variational data assimilation, based on the adjoint and quasi-inverse methods, are tested for a simple air quality problem. The four-dimensional variational assimilation (4D-Var) requires to run an adjoint model to provide the gradient information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial conditions directly by running a quasi -inverse model. For a process with small dissipation, I3D-Vu outperforms 4D-Var in both computing time and accuracy. Hybrid application which combines I3D-Var and standard 4D-Var is also suggested for efficient data assimilation in air quality problems.

COMPUTING GENERALIZED INVERSES OF A RATIONAL MATRIX AND APPLICATIONS

  • Stanimirovic, Predrag S.;Karampetakis, N. P.;Tasic, Milan B.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.81-94
    • /
    • 2007
  • In this paper we investigate symbolic implementation of two modifications of the Leverrier-Faddeev algorithm, which are applicable in computation of the Moore-Penrose and the Drazin inverse of rational matrices. We introduce an algorithm for computation of the Drazin inverse of rational matrices. This algorithm represents an extension of the papers [11] and [14]. and a continuation of the papers [15, 16]. The symbolic implementation of these algorithms in the package MATHEMATICA is developed. A few matrix equations are solved by means of the Drazin inverse and the Moore-Penrose inverse of rational matrices.

Dynamics Analysis of a 2-DOF Planar Translational Parallel Manipulator (2자유도 평면 병진 병렬형 기구의 동역학 해석)

  • Pham, Van Bach Ngoc;Kim, Han Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.185-191
    • /
    • 2013
  • In this paper, the dynamics of a novel 2-DOF planar Translational Parallel Manipulator (TPM) is analyzed. The suggested TPM is made up of two PPa (Prismatic-planar Parallelogram) legs. Since all the linear actuators are mounted on the base, the proposed TPM can be applied for high speed positioning applications. The Lagrangian equations of the first type is employed to derive the inverse dynamic equations. It is shown that the analytical inverse dynamics equations match very well with ADAMS simulations. These analytical inverse dynamics equations will be used for the real-time computed torque control in the further work.

Review on the inversion Analysis of Geophysical Data (지구물리자료의 역산해석에 관한 개관)

  • Kim Hee Joon;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.112-121
    • /
    • 1999
  • This article reviews the development of geophysical inverse theory. In a series of articles published in 1967, 1968, and 1979, G. Backus and F. Gilbert a trade-off between model resolution and estimation errors in geophysical inverse problems, and gave a criterion to compromise the reciprocal relation. Although the criterion was not clear in the physical point of view, it had been extensively used in the interpretation of geophysical date in the 1970s. This was the starting point of the fruitful development of inverse theory in geophysics. A reasonable criterion to compromise the reciprocal relation was derived to solve linear problems by D. D. jackson in 1979, introducing the concept of a priori information about unknown model parameters. This Jackson's approach was extended to solve nonlinear problems on the basis o probabilistic approach to the inverse problems formulated by A. Tarantola and B. Vallete in 1982. At the end of 1980s ABIC (Akaike Bayesian Information Criterion) was introduced for selecting a more reasonable model in geophysics. Now the date inversion is regarded as the process of extracting new information from observed data, combining in with a priori information about model parameters, and constructing a more clear image of model.

  • PDF

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.

ON TESTING THE EQUALITY OF THE COEFFICIENTS OF VARIATION IN TWO INVERSE GAUSSIAN POPULATIONS

  • Choi, Byung-Jin;Kim, Kee-Young
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.93-101
    • /
    • 2003
  • This paper deals with testing the equality of the coefficients of variation in two inverse Gaussian populations. The likelihood ratio, Lagrange-multiplier and Wald tests are presented. Monte-Carlo simulations are performed to compare the powers of these tests. In a simulation study, the likelihood ratio test appears to be consistently more powerful than the Lagrange-multiplier and Wald tests when sample size is small. The powers of all the tests tend to be similar when sample size increases.

A Study on the Shape Finding of Cable-Net Structures Introducing General Inverse Matrix (일반역행열(一般逆行列)을 이용(利用)한 케이블네트 구조물(構造物)의 형상결정에 관한 연구)

  • Sur, Sam-Uel;Lee, Jang-Bok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.75-84
    • /
    • 2002
  • In this study, the 'force density method' for shape finding of cable net structures is presented. This concept is based on the force-length ratios or force densities which are defined for each branch of the net structures. This method renders a simple linear 'analytical form finding' possible. If the free choice of the force densities is restricted by further condition, the linear method is extended to a nonlinear one. The nonlinear one can be applied to the detailed computation of networks. In this paper, the general inverse matrix is introduced to solve the nonlinear equilibrium equation including Jacobian matrix which is rectangular matrix. Several examples for linear and nonlinear analysis applied additional constraints are presented. It is shown that the force density method is suitable for form finding of cable net and the general inverse matrix can be applied to solve the nonlinear equation without Lagrangian factors.

  • PDF

Inverse Kinematic Analysis of a Three Dimensional Binary Robot Manipulator (3차원 2진 로봇 머니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Rhee, Ihn-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.205-212
    • /
    • 1999
  • A three dimensional binary parallel robot manipulator uses actuators which have only two stable states and its structure is variable geometry truss. As a result, it has a finite number of states and fault tolerant mechanism because of kinematic redundancy. This kind of robot manipulator has some advantages compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. Because the number of states of a binary robot manipulator grows exponentially with the number of actuators it is very difficult to solve and inverse kinematic problem. The goal of this paper is to develop an efficient algorithm to solve an inverse kinematic problem of three dimensional binary parallel robot manipulator using a backbone curve when the number of actuators are too much. We first derive the coordinate transformations associated with a three degree of freedom in-parallel actuated robot manipulator. The backbone curve is generated optimally by considering the maximum roll and pitch angles of the robot manipulator configuration and length of link. Then, the robot manipulator is fitted along the backbone curve with some criterion.

  • PDF

LEVEL-m SCALED CIRCULANT FACTOR MATRICES OVER THE COMPLEX NUMBER FIELD AND THE QUATERNION DIVISION ALGEBRA

  • Jiang, Zhao-Lin;Liu, San-Yang
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.81-96
    • /
    • 2004
  • The level-m scaled circulant factor matrix over the complex number field is introduced. Its diagonalization and spectral decomposition and representation are discussed. An explicit formula for the entries of the inverse of a level-m scaled circulant factor matrix is presented. Finally, an algorithm for finding the inverse of such matrices over the quaternion division algebra is given.