Browse > Article

Variational Data Assimilation for Optimal Initial Conditions in Air Quality Modeling  

Park, Seon-Ki (Department of Environmental Science and Engineering Ewha Womans University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.19, no.E2, 2003 , pp. 75-81 More about this Journal
Abstract
Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition rates. In this paper. two advanced techniques for variational data assimilation, based on the adjoint and quasi-inverse methods, are tested for a simple air quality problem. The four-dimensional variational assimilation (4D-Var) requires to run an adjoint model to provide the gradient information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial conditions directly by running a quasi -inverse model. For a process with small dissipation, I3D-Vu outperforms 4D-Var in both computing time and accuracy. Hybrid application which combines I3D-Var and standard 4D-Var is also suggested for efficient data assimilation in air quality problems.
Keywords
Air quality modeling; Data assimilation; Variational methods; Adjoint model; Quasi-inverse model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ayotte, K.W. (1997) Optimization of upstream profiles in modelled flow over complex terrain, Bound.- Layer Meteor., 83, 285-309
2 Bergamaschi, P., R. Hein, M. Heimann, and P.J. Crutzen (2000)Inverse modeling of the global CO cycle, I, Inversion of CO mixing ratios, J. Geophys, Res., 105(D2),1909-1927
3 Elbem, H. and H. Schmidt(1999) A four-dimensional variational chemistry data assimilation schemefor Eul-erian chemistry transport modeling, J. Geophys Res., 104(DI5), 18583-18598
4 Elbern, H., H. Schmidt, and A. Ebel (2000b) 4D-variational data assimilation with an adjoint air quality model for emission analysis, Environ. Modell. Software, 15,539-548
5 Fisher, M. and D.J. Larry (1995) Lagrangian four-dimen-sional variational data assimilation of chemical species. Quart. J. Roy. Meteor. Soc., 121, 1681-1704
6 Friedman, B. (1956) Principles and Techniques of Applied Mathematics, John Wiley & Sons, Inc., 315 pp
7 Ghil, M. and P. Malanotte-Rizzoli (1991) Data assimilation in meteorology and oceanography. Adv. Geophys., 33: 141-266
8 Liu, D.C. and J. Nocedal (1989) On the limited memory BFGS method for large scale optimization, Math. Prog., 45, 503-528
9 van Loon, M., PJ.H. Builtjes, and A.J. Segers (2000) Data assimilation of ozone in the atmospheric transport chemistry model LOTUS, Environ. Modell. Soft-ware, 15,603-609
10 Gill, P.E., W. Murray, and M.H. Wright (1981) Practical Optimization. Academic Press, 401 pp
11 Enting, I. (2000) Green's function methods of tracer inversion, in Inverse Methods in Global Biogeochemical Cycles. Edited by P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R.G. Prinn, and D.E. Hartley, AGU, Washington, D.C., 19-31
12 Zhang, X.F., A.W. Heemink, J.M. Janssen, P.H.M. Janssen, and FJ. Sauter (1999) A computationally efficient Kalman smoother for the evaluation of the ${CH_4}$ budget in Europe, Appl. Math. Modell., 23, 109-129
13 Anderson, D.A., J.C. Tannehill, and R.H. Pletcher (1984) Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corporation, 599 pp
14 Talagrand, O. (1997) Assimilation of observations, an intro-duction, J. Meteor. Soc. Japan, 75(IB), 191-209
15 Waelbroeck, C. and J.-F. Louis (1995) Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method, J. Geophys. Res., 100, 2801-2816
16 Park, S.K. and D. Zupanski (2003) Four-dimensional variational data assimilation for mesoscale and storm-scale applications, Meteor. Atm. Phys., 82, 173-208
17 Kalnay, E., S.K. Park, Z. - X. Pu, and J. Gao (2000) Applica-tion of the quasi -inverse method to data assimila-tion, Mon. Wea. Rev., 128,864-875
18 Sasaki, Y. (1958) An objective analysis based on the varia-tional methods, J. Meteor. Soc. Japan, 36, 77-88
19 Collins, W.D., P.J. Rasch, B.E. Eaton, B.Y. Khattatov, and J.-F. Lamarque(2001) Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for IN-DOEX, J. Geophys. Res., 106(D7), 7313- 7336
20 Leslie, L.M., M.S. Speer, L. Qi, E. Kalnay, S.K. Park, and Z. - X. Pu (2000) A comparison of data assimilation methods for hurricane track prediction, Preprints, 24th Conf. on Hurricanes and Tropical Meteoro-logy, Ft. Lauderdale, FL, Amer. Meteor. Soc., 128
21 Park, S.K. and K.K. Droegemeier (1997) Validity of the tangent linear approximation in a moist convective cloud model, Mon. Wea. Rev., 125, 3320-3340
22 Hartley, D.E. and R.G. Prinn (1993) Feasibility of determin-ing surface emissions of trace gases using an in-verse method in a three-dimensional chemical transport model, J. Geophys. Res., 98, 5183-5197
23 Elbern, H., H. Schmidt, and A. Ebel (1997) Variational data assimilation for tropospheric chemistry modeling, J. Geophys. Res., 102, 15967-15985
24 Tarantola, A. (1987) Inverse Problem Theory, Elsevier Sci-ence,613 pp
25 Austin, J. (1992) Toward four-dimensional assimilation of stratospheric chemical constituents, J. Geophys. Res., 97, 2569-2588
26 Pudykiewicz, J.A. (1998) Application of adjoint tracer transport equations for evaluating source parameters, Atmos. Environ., 32, 3039-3050
27 Elbern, H., H. Schmidt, and A. Ebel (2000a) Improving chemical state analysis and ozone forecasts by four-dimensional chemistry data assimilation, Proceed-ings, 3rd Int. Symp. Assimilation of Observations in Meteorology and Oceanography, Quebec, Canada, 1999, WMO/TD-No. 986, WMO, 293-296
28 Seinfeld, J.H. (1988) Ozone air quality models: A critical review, J. Air Pollut. Control Assoc., 38, 616-645