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 Abstract  
 
This paper proposes a novel algorithm for lane detection based on inverse perspective 
transformation and Kalman filter. A simple inverse perspective transformation method is 
presented to remove perspective effects and generate a top-view image. This method does 
not need to obtain the internal and external parameters of the camera. The Gaussian kernel 
function is used to convolute the image to highlight the lane lines, and then an iterative 
threshold method is used to segment the image. A searching method is applied in the 
top-view image obtained from the inverse perspective transformation to determine the lane 
points and their positions. Combining with feature voting mechanism, the detected lane 
points are fitted as a straight line. Kalman filter is then applied to optimize and track the 
lane lines and improve the detection robustness. The experimental results show that the 
proposed method works well in various road conditions and meet the real-time 
requirements. 
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1. Introduction 

Recent years, Advanced Driver Assistance System (ADAS) has attacted widespread 
attention of researchers. ADAS can effectively assist the driver and reduce the incidence of 
traffic accidents. Lane detection and tracking are a key technology for autonomous vehicle 
and ADAS applications such as Lane Departure Warning and Lane Change Assist. The 
task of lane extraction is to separate the traffic lanes from the background within an image. 

Existing lane detection methods can be classified into two classes: feature-based 
approach and model-fitting approach. The feature-based approach extracts lanes by 
analyzing the low-level characteristics of the image. Several methods based on 
characteristics have been proposed. Yang et al. [1] proposed a lane detection method based 
on improved Hough transform. They applied a polar angle constraint to locate the position 
of the lane and then used dynamic Region of Interest to track the lane line. Chen et al. [2] 
presented a line scanning method based on imaging model to remove the interruption of 
non-lane road markings. The local maximum value of the edge contribution function is 
calculated after the edge point is extracted and then the lane line is fitted into a straight line. 
Yi et al. [3] extracts firstly the effective edge by using the image gradient, and then clusters 
and classifies the effective feature points into lane lines. Gao et al. [4] employed Hough 
transform to extract line features within an image and then used the direction and strength 
information of extracted line to determine the lane marking. In [5], the authors utilized 
spatiotemporal images to determine lane points, and fitted the detected lane points to a 
cubic curve. Lindner et al. [6] utilized multi-level features to determine geometric features 
as candidates that were further classified for the distinction between true and false lane 
marking points. In [7], authors employed a Kalman filter to track the lane lines detected by 
the Hough transform, and measurement updating of the Kalman filter was conducted by 
identifying the vanishing point, a left marking point and a right marking point. The 
feature-based approach can be influenced by factors such as lighting, lane breakage, tree 
shadows and road marking. Aly [8] presented a real-time method for detecting lane 
markers in urban scenarios. The method generated a top-view image of the road, and 
employed RANSAC line fitting method to give initial estimation for fitting Bezier Splines. 
Yoo et al. [9] proposed a lane detection method based on vanishing point estimation. Line 
segments that pass through the vanishing point were located. Candidate line segments for 
lanes were selected according to geometric constraints, and the host lanes were determined 
by using a score function. Mammeri et al. [10] used the Maximally Stable Extremal Region 
method with a three-stage refinement to determine lane line area. And then, the Progressive 
Probabilistic Hough Transform was employed to detect lane markings.  

The mode-fitting approach employs a predefined curve model such as a line model or 
parabolic model to match the line features within an image, and therefore a lane detection 
issue becomes the process of calculating the parameters of the model. References [11, 12] 
presented a method utilizing generalized curve parameters model to fit lane lines. Adaptive 
random Hough transformation (ARHT) and the tabu search algorithm were used to 
calculate the parameters in the lane model. In [13], a B-snake lane model was used to 
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convert the problem of lane detection into the problem of finding the control points which 
determine the spline curve. As an improvement, Li et al. [14] presents a parallel-snake 
model combining with Kalman filter to achieve a more robust and accurate lane detection 
and tracking. Zhou et al. [15] proposed a deformable template model to match the lane 
boundaries, and used the Tabu search algorithm with the maximum posterior probability to 
estimate the parameters of the template. They have also employed a particle filter to 
recursively estimate the lane shape. Zhou et al. [16] used the main direction and the edge 
direction of lines to estimate parameters of the fitting model, and the Gabor filter was 
employed to further select the best lane marking parameters. In [17], a lane detection 
algorithm based on a hyperbola-pair lane boundary model was proposed. By fitting points 
on pair road boundaries into this model, the method was able to make full use of road 
boundaries with existence of partial occlusion. In [18], lane boundaries were initially 
detected using a linear–parabolic lane model, pairs of local maxima–minima of the 
gradient were used as cues to identify lane markings, and a Bayesian classifier based on 
mixtures of Gaussians was applied to classify the lane markings. In [19], lane lines were 
assumed to be cubic curves and fitted using the ransac algorithm. The model-based 
approach benefits for detection of a bending lane line, but requires complicated algorithm 
to determine the model parameters. 

In [20], a machine learning based approach has been proposed for lane detection.  Both 
structural and statistical features of the extracted bright shape are applied to the Neural 
Network for finding correct lane marks. In [21], convolutional neural networks 
demonstrated superior performance for image enhancement and lane detection.  

This paper proposes a novel and simple line fitting method to extract lane lines using 
road feature points. The processing is conducted on the top-viewing image obtained from 
the inverse perspective transform, and Kalman filter is then employed to track the lane to 
ensure the detection robustness. The framework of the method is shown in Fig. 1. 

 
 

 
Fig. 1. Framework of the proposed method 

 

 



646                                    Huang et al.: Lane Detection Based on Inverse Perspective Transformation and Kalman Filter 

2. The image pre-processing 

2.1 Obtaining the region of interest (ROI) 
The image obtained by the car camera contains a large non-road area, such as sky, trees on 
roadside, etc. Globally processing of the image will increase the computational complexity 
and reduce the real-time capability. Furthermore, the invalid area will interfere the lane 
information and affect the detection accuracy. Therefore, the valid region within the image 
should be selected to eliminate the invalid information. The area shown in the red box of 
Fig. 2 is the region of interest (ROI) for lane detection, which reaches to the vanishing 
point and takes about half of the area in the bottom of the image depending on camera 
installation. In some cases that the front hood of the equipped car has been captured in the 
bottom of the image, the ROI must remove the bottom area containing the front hood. 
 

 
Fig. 2. Region of interest  

2.2 Inverse perspective transformation 
Due to the imaging perspective effect, the traffic lanes in Fig. 2 present as two non-parallel 
lines. The inverse perspective transformation is to eliminate the perspective effect and 
produce a top view image that is consistent with the actual situation. In the resulting top 
view image, the lane lines are vertical and parallel to each other, which facilitate the 
identification in subsequent algorithms. 

Strict reverse perspective transformation requires the knowledge like the tilt angle and 
height of camera installation, the camera aperture size and other physical quantities. In this 
work, a simple trapezoidal transformation is used to produce the top view image. The ROI 
in Fig. 2, the rectangular region, should be converted into an inverted trapezoidal shape 
after the transformation. The inverse perspective transformation is simplified as the process 
that convert a rectangular into an inverted trapezoidal. Letting ),( vu  denote the ROI 
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coordinate system, ),( yx  denote the transformed top view coordinate system, the mapping 
relationship can be expressed as: 

 
QMP =                                         (1)  
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Equation (2) indicates that the transformation matrix M can be solved by locating four 

corresponding points between the ROI coordinate system and the top view coordinate 
system. 

In practice, the points A, B, C, and D in the ROI image and the points A, E, F, D in the 
transformed image as shown in Fig. 3 are selected as the corresponding points between the 
transformation to determine the matrix M . The top view image obtained from the 
transformation is shown in Fig. 4. It can be seen from the figure that the transformed top 
view image appears as an inverted trapezoid, and the lane lines present as parallel and 
vertical (or close to parallel and vertical). 
 

 
Fig. 3. Corresponding points between the inverse perspective transformation 
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Fig. 4. Top view image obtained from the inverse perspective transformation 

2.3 Lane enhancement 
In order to highlight the lane lines and weaken the peripheral irrelevant area, a two 
dimensional Gaussian kernel function is used to convolute the image, the expression is as 
follows: 
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Equation (3) is the Gaussian kernel response function in the horizontal direction, and 
equation (4) is the Gaussian kernel response function in the vertical direction. The 
horizontal kernel is a second-derivative of Gaussian, whose xσ  is adjusted according to 
the width of the lanes (set to the equivalent of 8cm in the top-view image). The vertical 
kernel is a smoothing Gaussian, whose yσ  is adjusted according to the height of lane 
segment (set to the equivalent of 1 meter in the top-view image). Using this separable 
kernel allows for efficient implementation, and is much faster than using a non-separable 
kernel. 

Fig. 5 shows the result of the Gaussian convolution. The left image is the 2D Gaussian 
kernel used for image convolution. It can be seen that the lane markers are enhanced, the 
surrounding area is weakened and the vertical response is stretched.  
 

  
Fig. 5. Lane enhancement. 
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2.4 Image binarization 
To distinguish lane lines from background, image is binarized according to the gray scale 
of the image pixels. The key to binarize an image is how to select the threshold. Since 
illumination varies under deferent road scenes, it is impossible to distinguish the lane lines 
from background using a fixed threshold. In this work, an iterative method is used to 
determine an optimal threshold to extract lane lines. The optimal threshold is capable of 
adapting to varied illumination.  

The image can be divided into two regions of A and B according to the threshold 
),...1,0( nkTh k = , and the average gray value of the two regions can be calculated as 

follows: 
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the threshold kTh , and ∑
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Thus, a new threshold can be calculated as follows: 
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Repeat the above steps until 1+= kk ThTh , and the resulting threshold is the optimal 
threshold. Initially, the threshold is set as: 
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where, maxg   and ming  are the maximum and minimum gray value within the original 
image respectively. The binarized image is shown in Fig. 6.  
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Fig. 6. Image Binarization 

3. The lane detection algorithm 

3.1 Extraction of lane characteristics 
In the top view image obtained from the reverse perspective transformation, the lane lines 
become vertical and parallel as their actual state. The following searching method is used to 
determine the location of the lane lines.  

Step 1: In the binarized image, starting at the image center to search for the lane point to 
the left and the right. For each column, the points whose grey value is not zero are counted. 
As a result, the number of these points )(xf is recorded as the function of the abscissa x . 

Step 2: )(xf will be an extreme value at a vertical line. However, due to a lane line 
having a certain width and not being perfectly vertical, a lane line may be identified as 
multiple straight lines. That is to say there are multiple extreme points within the lane’s 
width range. A Gaussian filter is applied on )(xf to merge the extreme points located 
closely. 

Step 3: Some extreme points can’t be merged by the Gaussian filter because they are far 
apart from each other. Setting a neighborhood α  and merging these extreme points within 
α  by the following processing. Assuming that two extreme points are found at 1x  and 2x , 
the combined abscissa of extreme points is calculated as follows: 
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The combined abscissa is calculated as a weighted average of the two extreme points 

with )(xf  as the weights. The position of the combined extremum is more biased towards 
the point whose )(xf  value is larger.  

By this processing, each lane line will be determined as a single extremum. They are 
stored in an array H , and arranged in descending order. The extreme point response is 
plotted in Fig. 7.  
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Fig. 7. Extreme point response of individual lanes 

3.2 Line fitting  
Each element in H denotes an extreme point corresponding to one lane line. Each lane line 
can be fitted according to its extreme point by the following steps: 

Step 1: For each x in the array H , choose point 1P )0,( 1bx and 2P ),( 2 hxb  with 
bxxbx b +<<−

1
 and bxxbx b +<<−

2
, where b is the pixel number 

within the width of a lane line, and h is the height of the image. Connecting 1p and 2p  
generates a line. 

Step 2: Step 1 will generate 2)12( −b  straight lines in total for each x in the arrayH . 
Count the pixels with non-zero gray scale in a line as the polling score of the line. 

Step 3: Take the line with the largest polling score as the lane line. 
Step 4: Repeat the above 3 steps and obtain all lane lines within the image 
This process will enable each element x  in the array H  to generate a straight line. In 

order to obtain the left and right lane lines of the current vehicle, it is assumed that the 
vehicle is traveling at the middle of the two lines, and the interference information in the 
middle of the lane are removed by the lane spacing constraint, such as the pedestrian line, 
as well as other straight lines outside the driveway. 

  4. The lane tracking algorithm 
The damage of lane lines, road surface stains, shadows and the interference of other 
vehicles may lead to miss-detection in a frame or a few frames. In order to predict the lane 
position in the case where the lane is not recognized, the Kalman filter is used to track the 
lane. The lane tracking mechanism can greatly reduce the interference of various factors on 
the image and improve the robustness and speed of detection. 

4.1 Lane tracking based on Kalman filter 
Kalman filter is a high efficiency auto-regressive filter. It can optimize and predict the 
location of the target based on the measurements. The Kalman filter used a feedback 
mechanism to realize the filter estimation, mainly relying on a state equation and an 
observation equation. The two equations are as follows: 
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where, )(kX  is M-dimensional state vector, )(kZ  is N-dimensional state vector, A  is 
state transition matrix of MM × dimension and H is observation matrix of MN ×  
dimension. )(kW is M-dimension process noise vector, )(kV is N-dimension 
measurement noise vector, )(kW  as well as )(kV  can be modeled as Gaussian white noise 
and satisfy the following normal distribution: 
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where Q  and R  denote the process noise covariance matrix and measurement noise 
covariance matrix, respectively. 

Based on the minimum mean square error theory, Kalman filter uses the optimized value 
)1( −kx and the measured value )(kz  to solve the optimized value )(kx . This process 

is divided into two steps of prediction and correction. 
First step: prediction (Time updating) 
The estimated value )(̂kx  is obtained from the optimized value )1( −kx  according to 

the state equation: 
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The error covariance matrix can be presented as follows: 
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The observed value at k th moment obtained from observation equation can be 
calculated as follows: 

                  )1|(̂)(̂ −= kkxHkz                        (13) 
 

Second step: Correction (Measurement updating) 
The optimized value )(kx can be calculated by correcting the estimated value )(̂kx  

with the observed value )(kz and the gain matrix )(kG . 
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where, the gain matrix can be expressed as follows: 
 

1])1|([)1|()( −+−−= RHkkHPHkkPkG TT            (15) 
 
    Updating the error covariance matrix as follows: 
 

)1|(])(1[)( −−= kkPHkGkP           (16) 
 
where, )(kx  and )(kP  are used for optimization of next frame, which is an iterative 
process for continuous prediction and updating. 

In this work, the state vector )(kx  is defined as ],,,[ 4321 xxxx , where 1x  and 2x  
denote the upper and lower coordinates of the left lane, 3x  and  4x  denote the upper and 
lower coordinates of the right lane. In our method, the state transition matrix A  and the 

observation matrix H are defined as 
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)(kx  is regarded as unchanged between consecutive frames, and the observed values and 
estimated values are the same variables. The process noise covariance matrix Q is has little 
effect in the tracking process. In order to facilitate the calculation, we define 
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Q . The measurement noise has a greater effect than the 

process noise in the tracking process. The measurement noise covariance matrix is set as 
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by recording the errors between real lane position and measured lane position. The iteration 
processing can reduce the effect of the measurement noise to give an optimized estimated 
value. 
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In order to obtain a fast convergence of the tracking, the autocorrelation value is set as 

100, so the initial error covariance matrix is set as 
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In most cases, the equipped vehicle drives in the middle of the two lanes, and the 
curvature of the lanes is small, which means the lane in the near field can be approximated 
as a straight line. The lane’s position under these situations is considered as an ideal state 
and used to initialize the Kalman filter.  In the subsequent detection, if one or two lane lines 
are not detected successfully, the following process will be executed: 

(1) For the case that the left lane is only detected, the right lane is set as the position of 
the left lane plus the width between two lanes. The positions of the two lanes are passed to 
the Kalman filter as the measured values. 

(2) For the case that the right lane is only detected, the left lane is set as the position of 
the right lane plus the width between two lanes. The positions of the two lanes are passed to 
the Kalman filter as the measured values. 

(3) For the case that both lanes are not detected, the locations of the ideal lanes are 
passed to the Kalman filter as the measured values. 

5. Experiments and Results 

5.1 Lane detection experimental results 
Experiments have been conducted on Caltech image database [8], one of the popular 
benchmark platforms for lane detection in urban scenes, established by the California 
Institute of Technology. The results are shown in Fig. 8. It can be seen that the proposed 
method can tolerate the interferences like zebra marking (a, b), vehicles and shadows (c, d, 
e and f) and road signs (g, h and i), and shows robustness in these scenes. 
 
 

       
(a)                                                    (b)                                                (c) 
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          (d)                                                    (e)                                                (f) 

   
          (g)                                                 (h)                                                  (i)        

Fig. 8. Lane detection results in urban scenes 
 

Experiments have also been conducted on image sequences captured from highway and 
rural roads. The results are shown in Fig. 9. For highway scenarios, the system works well 
under poor lighting condition Fig. 9 (a) (tunnel), yellow line interference Fig.9 (b), and 
breakage of lane line Fig.9 (c). Experiments also show that the system is capable of 
working in rural roads as shown in Fig.9 (d), (e) and (f) interference. In summary, the 
proposed method is immune to various interferences and works well in various road 
conditions. The method has no problems like wide lane lines being identified as plurality of 
straight lines or dashed lanes being identified as discontinuous lines. 
 

    
(a)                                       (b)        (c) 
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   (d)   (e)                                                  (f) 

Fig. 9. Lane detection results in highway and rural road scenes 
 

5.2 Lane tracking experimental results 
In the cases that the lanes are not or wrongly detected, the Kalman tracking algorithm can 
take effects to compensate and correct the detection results. In the following images, the 
red lines are the results obtained from the detection algorithm while the blue lines represent 
the lanes obtained from the tracking algorithm. Fig. 10 shows three special cases where the 
left lane line is broken (a), the shadow interference causes a detection failure of the right 
lane (b), and the road signs cause a deviation of the lane detection (c). In these cases, if we 
only rely on the lane detection algorithm, we will lose some lane lines (a) and (b) or get 
inaccurate lane position (c). But, with the effect of Kalman filter tracking, the lost lane lines 
can be retrieved and the deviated detection can be corrected according to the temporal 
consistency. 
 

    
  (a)         (b)     (c) 

Fig. 10. Comparison of detection and tracking for three special cases 
 

Fig.11 shows the lane detection and tracking results for a sequence of images in a 
highway scenario. The right lane is a long solid line, leading to a stable detection results. 
However, the left lane is a long broken line; thus, the detection results present a small range 
of fluctuations. With the effect of the Kalman filter, the left lane line becomes smooth and 
stable. 
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(a)                                  (b)                              (c) 

   
(d)                                    (e)                              (f) 

Fig. 11. Lane tracking results in highway scenario 
 

Fig. 12 shows the lane tracking results when the vehicle passes through a tunnel. It can 
be seen that, thanks to the Kalman filter tracking algorithm, we can always get stable lanes 
even if the lighting condition is poor.  

 

                                             
(a)                                                  (b)                                               (c)                                               

   
          (d)                                                  (e)                                                (f) 

Fig. 12. Lane tracking results in poor lighting conditions 
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5.3 Evaluation and Comparison with other works 
The proposed method has been compared to the approaches presented in [8, 9] by using the 
standard Caltech database. The database contains four clips: Cordova1 with 250 frames, 
Cordova2 with 406 frames, Washington1 with 336 frames, and Washington2 with 232 
frames. Cordova1 has road signs on the street; Cordova2 contains various pavement 
markings with some of the frames lack of lane markings; Washington1 has shadows and 
passing cars with some double yellow lines; and Washington2 contains road signs, double 
yellow lines and vehicles as well. Overall, the database includes scenes with various 
interferences like pavement markings, broken lane markings, shadows, and so on. For 
every frame, each detected lane is compared to manually drawn ground truth. The criteria 
to determine if it is a correct or false lane detection is the same as the one used in [9].  

Table 1 presents a comparison of lane detection rate on Caltech database. Aly’s method 
detected lanes independently in each frame without tracking. As improvement, Yoo’s 
method considers interframe similarity for location of the detected lanes and the estimated 
vanishing point in consecutive frames, so Yoo’s method outperformed Aly’s method. Our 
method combines the tracking mechanism with lane detection and presents a similar 
performance with Yoo’s method. In most cases, the detection rate exceed 90%, except 
cordova2, because there are a large number of missing road markings in cordova2. There 
exist a lot of shadow interference in washington1, so the detection rate is relatively low. On 
average, lane detection rates of Aly’s method is 87.96%, Yoo’s method is  92.43%, and our 
method is 93.05%.  

 
 Table 1. Comparison of Lane detection rate (%) on Caltech database 

 Aly [8] Yoo [9] The Proposed method 
Cordova1 91.60 94.40 94.20 
Cordova2 75.37 87.44 88.32 

Washington1 92.43 89.61 91.45 
Washington2 92.46 98.28 98.21 

Mean 87.96 92.43 93.05 
  

The system was implemented in Visual Studio 2013 with Opencv3.0 in a PC quipped 
with a 2.40-GHz Intel Dual Core i5 processor and 4GB of RAM. The image resolution is 
640 × 480 pixels. In general, we can achieve a processing rate of 18-23 FPS depending on 
complexity of the images.  

6. Conclusion 
This paper proposes an efficient, robust and real-time algorithm for lane detection by using 
line fitting on the top-view image generated from the inverse perspective transformation. 
Kalman filter is adopted to optimize and track the lane lines and improve the detection 
accuracy and robustness. The experiment results show that the proposed method is robust 
against broken/missing lines, shadows/road sign interference and poor lighting conditions, 
and can effectively detect lanes under various road conditions. The implemented system 
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also meets the real-time requirement. 
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