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Abstract

Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for

obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition

rates. In this paper, two advanced techniques for variational data assimilation, based on the adjoint and quasi-

inverse methods, are tested for a simple air quality problem.

The four—dimensional variational assimilation (4D~ Var) requires to run an adjoint model to provide the gradient
information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial

conditions directly by running a quasi-inverse model.

For a process with small dissipation, I3D-Var outperforms 4D-Var in both computing time and accuracy.

Hybrid application which combines I3D-Var and standard 4D~ Var is also suggested for efficient data assimilation

in air quality problems.
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1. INTRODUCTION

Air quality modeling, used for predicting future
states of atmospheric pollutants, inherently includes
uncertainties in input parameters (e.g., meteorological
conditions, emissions, initial and boundary conditions
for pollutants, empirical constants, etc.) (see, e.g.,
Seinfeld, 1988). Especially, tropospheric chemistry is
largely affected by emissions and the absorption of
constituents by surface interactions. Therefore, provi-
ding accurate estimates of the initial states and emis-

sion rates is essential for improving the air quality pre-

* Corresponding author.
Tel : +82-(0)2-3277-3331, E-mail : spark@ewha.ac kr

diction.

Accurate initial states and emissions can be estimat-
ed by solving the inverse problems. For given mea-
surements of observable quantities, an inverse problem
aims at obtaining the values of model parameters,
including initial states (Tarantola, 1987). The inverse
problems in meteorology often involve solving varia-
tional problems for data assimilation, which denotes a
process that blends all available observations with
model to produce an accurate estimate of initial states.

Until recently, assimilations in atmospheric chemi-
stry have favorably employed simple methods such as
optimal interpolation and nudging (e.g., Collins er al.,
2001; Austin, 1992). An advanced assimilation, using
the variational inverse modeling, was first introduced
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in stratospheric chemistry simulation by Fisher and
Lary (1995) and was expanded to tropospheric gas
phase mechanism by Elbern et al. (1997).

One of the most important inverse modeling appli-
cations in atmospheric chemical transport is to estimate
emissions or surface fluxes using observed concen-
trations, mainly due to the uncertainties involved in
emission estimation. There exist several different
approaches for inverse modeling of airborne emissions
such as the Green’s function (Enting, 2000), Bayesian
inversion (Bergamaschi ez al., 2000), the adjoint of a
chemical transport model (Pudykiewicz, 1998), and the
four-dimensional variational data assimilation (4D-
Var; Elbern er al., 20004a, b).

Another category of advanced data assimilation is
represented by Kalman filter, in which forecast error
covariances are computed every time step. This me-
thod will not be covered in this study; for interested
readers, several references related to this category can
be found for a review (Ghil and Malanotte—Rizzoli,
1991) and for applications to air quality problems (e.g.,
van Loon et al., 2000; Zhang et al., 1999; Hartley and
Prinn, 1993).

Unlike meteorological prediction, the issue of find-
ing correct initial conditions with the aid of observa-
tions (i.e., data assimilation) has received relatively
less attention until now. Two major reasons for this, as
indicated by Elbern et al. (1997), are: 1) measurement
sites of chemical constituents are very sparse (i.e.,
highly localized), and 2) chemistry -transport simula-
tions are mostly controlled by emission and deposition
process rather than by initial values. However, these
problems can be treated by adopting advanced data
assimilation methods that can handle with all available
observations distributed in both space and time. Espec-
ially, in the 4D-Var framework, parameters (e.g.,
emission and deposition rates, surface fiuxes, etc.) as
well as initial and/or boundary conditions can be
optimized simultaneously.

The feasibility of 4D—Var for comprehensive tropo-
spheric chemistry problem has been demonstrated for

initial conditions (Elbern ef al., 1997), for emissions of
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various chemical species (Elbern et al., 2000a, b), and
for synthetic conditions (Elbern and Schmidt, 1999).
The 4D-Var allowed to obtain initial states for air
pollution modeling even when only sparse observa-
tions are available (Elbern er al., 1997). Elbern et al.
(2000b) analyzed the emission rates of unobserved NO
by applying the 4D-Var with observations of ozone
only. As demonstrated, the 4D-Var has been success-
fully applied to deduce emission estimates for specific
time periods of interest as well as optimized initial
conditions for air quality models.

Originally the variational approach has been intro-
duced into meteorology by Sasaki (1958). The 4D-
Var, which is the most advanced framework of the
variational approach, has been recognized as a promi-
sing tool for yielding dynamically -balanced optimal
initial conditions for numerical forecast problems (see
reviews by Talagrand, 1997; Park and Zupanski, 2003).
In the 4D~-Var, a cost function, which is defined as the
weighted squared distance between model solutions
and observations, is minimized via iterative processes.

At each iteration, the 4D-Var requires to run the
forward model (e.g., nonlinear air quality model), its
corresponding adjoint model and a minimization
algorithm. Integration of the adjoint model provides
the gradient information required by minimization
algorithms (see Gill et al., 1981 for a review). In mini-
mizing the cost function, most algorithms require
several tens of iterations to reach a local minimum of
the cost function. This causes the most unfavorable
problem in operational application of the standard 4D~
Var due to a huge computational demand.

Recently an efficient variational assimilation scheme,
called the inverse 3D—-Var (I3D-Var), is developed
based on the inverse model integration (Kalnay et al.,
2000). In the 13D~ Var, the observational increment at
initial time is obtained by a backward integration of the
tangent linear model, in which the sign of time step is
changed (i.e., inverse). Here, the sign of dissipative
terms is also changed in order to avoid computational
blow—up (i.e., quasi—inverse).

It is demonstrated that the I3D-Var solves the mini-
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mization problem close to the 4D~-Var at much less
computational cost (e.g., Kalnay er al., 2000; Leslic et
al., 2000).

In this study, application of variational data assimi-
lation will be illustrated to obtain optimal initial condi-
tions for an air quality problem represented by a simple
transport (advection) and diffusion process, using both
the adjoint approach (standard 4D-Var) and the quasi—
inverse approach (I3D-Var). Although estimation of
other parameters can be also obtained by the variatio-
nal assimilation, it is not covered here. Section 2 pro-
vides theoretical background on the adjoint and quasi-
inverse approach in variational assimilation, and sec-
tion 3 describes model and experiment design. Results
and conclusions appear in section 4 and 5, respec-

tively.

2. BRIEF THEORETICAL BACKGROUND

Let us assume that a forward model describing time
evolution of pollutants is represented by a nonlinear
propagator M operating on the initial state vector Xo

(i.e., nonlinear model):
X[ = MX(). ( l )

Taking the first-order (linear) term of the Taylor
expansion of (1), for small perturbations 8Xy in the
vicinity of X, yields the tangent linear model:

SX( = L6X0 (2)

where L is a tangent linear operator. Using the adjoint
approach, the gradient of any scalar function of the
output state vector, J(X,), with respect to input parame-
ters is given by

VxJ=L*Vx] 3

where L* is the adjoint operator of L (see Friedman,
1956). This is the adjoint model of (2). In practice, the
state vector X is extended to include all parameters
(physical/computational) of the model and J itself
(Park and Droegemeier, 1997, Waelbroeck and Louis,

1995).

Using the quasi-inverse approach, one can obtain
the initial perturbation fields (8Xo) by solving directly
2):

0Xo=L""8X, )]

where L™! is the inverse of L. With this formulation,
one can trace the short-range forecast error back to
ini-tial time. Since the small dissipative terms are irre-
versible, it is not possible to obtain the “exact-inverse”
linear model. In practice, L™! is approximated by the
“quasi-inverse” linear model by either changing the
sign of dissipative terms to avoid computational insta-
bility or neglecting the dissipative terms (Kalnay er al.,
2000).

The above-derived adjoint and quasi-inverse linear
models can be used to solve an optimization problem
such as variational data assimilation. By definding J as
the cost function, the adjoint model provides the
gradient information (i.e., VxJ) which is essential for
most minimization (or optimization) algorithms (see
Gill er al. 1981 for a review on various algorithms).

For example, Vx,J is used to obtain optimal initial
conditions from uncertain initial analysis fields (Xq)
(e.g., Ayotte, 1997; Elbern et al., 1997). The quasi—
inverse model produces an increment in initial condi-
tions 8Xo that optimally corrects a perceived forecast
error at the final time t (see Kalnay er al., 2000).

3. MODEL DESCRIPTION AND
EXPERIMENT DESIGN

A simple advection-diffusion model including a
passive scalar transport is employed to represent a
simplified air quality problem. Here the chemical reac-
tion processes are omitted for simplicity. For an advec-
tion velocity u and a passive scalar g, the model equa-
tion is given by:

du ou d%u

ot X ox?
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where

u=u+08u, q=g+38q

and v is diffusion coefficient. Note that the interaction
bewteen u and q in Eq. (5) occurs in one way, i.e., only
from u to q. The adjoint and quasi-inverse linear
models are developed for this nonlinear model.

In this experiment, numerical computations are
conducted by employing the leapfrog/DuFort-Frankel
scheme (see Anderson et al., 1984). The initial condi-
tions are given by the sine functions and the boundari-
es are fixed to zero.

The assimilation period is set to N =101 or 121,
where N is the number of time steps. The validity of
tangent linear and quasi-inverse linear models has
been tested in various aspects. For this experiment, the
diffusion coefficient is set to v=1X 1073, For the
minimi-zation process in the standard 4D-Var, the
limited—memory Broyden-Fletcher—Goldfarb-
Shanno (LB-FGS) algorithm (Liu and Nocedal, 1989)

Observation

A

Model Run

Initial [ Forward

is used. The quasi-inverse linear model is solved by

changing the sign of diffusion terms.

4. RESULTS

Variational data assimilation experiments were
performed using both standard 4D~-Var and 13D-Var
methods for simulated observations. The iterative 4D—
Var process is provided in Fig. 1. As illustrated, one
iteration of 4D-Var involves running a forward non-
linear model and a backward adjoint model, and con-
ducting a minimization process. Meanwhile, iterative
process of 13D—Var does not include the minimization
process, thus saving computing time.

Figure 2 represents the performance of two methods
(i.e., standard 4D-Var vs. I3D-Var) for assimilation
period N =121. Here, the 4D~Var incorporates obser-
vations at all time steps while the I3D-Var takes
observation only at the end of the assimilation period.
With the I3D-Var the cost function converges to 10-14
of its original value after 7 iterations. However, the

4D-Var with complete observations requires 45 equi-
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Fig. 1. lterative process in standard 4D-Var.
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Fig. 2. Convergence rate of cost functions using adjoint
4D-Var (ADJ) and inverse 3D~ Var (INV) as a func-
tion of ICALL (number of calls for the nonli-near
model and adjoint or inverse model). For the ad-
joint 4D-Var, observations are incorporated at all
time steps time steps. The initial error magnitude
is 50 % for u. The diffusion coefficient is set to v=
1x10-% and the assimilation period is N = 121
time stpes.
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Fig. 3. Same as in Fig. 2 but for N=101.

valent model integrations for the cost function con-
verges to 1071, That is, even with much less observa-
tions, the I3D-Var achieves the minimization with less
computing time and better accuracy than the 4D-Var
does.

In Fig. 3, the same experiment is performed for a
shorter assimilation period (N = 101). The I3D-Var

requires 6 iterations to minimize the cost function at

the accuracy of 10-!¢ while the 4D-Var with full
observations requires 22 iterations at the accuracy of
1071, Overall, with a shorter assimilation period, both
the I3D-Var and 4D~-Var show better performance in
computing time, especially with 4D-Var. The I3D-
Var outperforms the 4D-Var in accuracy when the
assimilation period becomes shorter.

Leslie et al. (2000) has recently compared the per-
formance of 4D-Var and I3D-Var for forecasting
more than 40 cases of tropical cyclones using a three—
dimensional meteorological model. They demonstrated
that the I3D-Var is 8 times faster than the 4D-Var
with similar accuracy. This saving in computing time
implies significant saving in computational resources
in operational applications.

Recently, Park and Zupanski (2003) proposed a
hybrid method which combines the I3D-Var and the
standard 4D-Var. This is based on the idea that,
although the I13D-Var may not replace the full 4D-
Var due to problems with dissipation and microph-
ysics, it may serve as a preconditioner when carrying
minimization in the framework of the 4D-Var. That is,
one may employ the I3D-Var for the first few itera-
tions then switch to the 4D-Var using the I3D-Var
results as the initial guess field. With this strategy, the
computing time is still much less compared to the
cases using just standard 4D-Var.

5. CONCLUSIONS

In this study, two variational assimilation techniques
are tested for an air quality problem represented by a
simple advection-diffusion model that includes a
passive transport variable. Here, the standard 4D-Var
is based on the adjoint approach while the inverse 3D-
Var (I3D-Var) is based on the quasi-inverse appro-
ach. Both are advanced assimilation methods that
combine observations scattered in both space and time,
climatological and other a priori knowledge, and
numerical model in dynamically consistent way.

In the standard 4D~-Var, the cost function is mini-
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mized by employing an iterative minimization algori-
thm which requires the gradient information. Thus an
adjoint model run is required to provide such gradient
information into the minimization algorithm. In I13D-
Var, a quasi-inverse linear model is run to minimize
the cost function by directly obtaining the optimal
increment.

Our results show that, for not too large diffusion
process, the performance of I3D~-Var is much better
than that of standard 4D-Var. For a model with com-
plex microphysics and large diffusion process, the
hybrid method combining I3D-Var and 4D-Var can
be employed to accelerate the minimization of the cost
function. Especially in the air quality prediction system
in which the diffusion process is very important, it is
strongly recommended to apply the hybrid strategy in
designing and performing the four-dimensional varia-
tional data assimilation.

There exist several factors that are essential for suc-
cessful 4D-Var and/or I3D-Var (see a review by Park
and Zupanski, 2003). Especially, in applying varia-
tional methods to air quality models, one should pay
special attention when chemical reactions are strongly
nonlinear. Since the adjoint and quasi-inverse linear
models are based on the tangent linear approximation,
a strongly nonlinear process causes this approximation
to be invalid (Park and Droegemeier, 1997). Thus it
may induce incorrect gradient and increment informa-
tion through the adjoint and quasi-inverse linear
model, respectively, in the variational optimization.
Nonlinearity may also cause alteration in the geometry
of cost function by generating multi—-minima, plateau,
and even a forbidden region (see Park and Zupanski,
2003). One possible way to alleviate this problem is to
make the assimilation window short enough to sup-
press excessive increase of nonlinearity.

Overall, the variational data assimilation is a promi-
sing tool in air quality modeling for optimal estimation
of important parameters (e.g., emission rates) as well
as initial and boundary conditions. The problem with a
large amount of computational resources required by

the standard 4D-Var can be alleviated by adopting
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efficient alternative methods such as I3D-Var or com-
bining both 4D~-Var and I3D~Var (i.e., hybrid appro-
ach). Although this study has focused on obtaining
optimal initial states, the variational assimilation
method is also capable of estimating several important
parameters in air quality modeling such as emission
and deposition rates, surface flux, etc. Further studies
are necessary to investigate the usefulness of I3D-Var

in estimating such parameters.
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