• Title/Summary/Keyword: *-prime ring and *-ideal

Search Result 157, Processing Time 0.022 seconds

Chow groups on complete regular local rings II

  • Si Chang Lee;Kyu Bum Hwang
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.569-573
    • /
    • 1996
  • We study some special cases of Chow groups of a ramified complete regular local ring R of dimension n. We prove that (a) for codimension 3 Gorenstein ideal I, [I] = 0 in $A_{n-3}(R)$ and (b) for a particular class of almost complete intersection prime ideals P of height i, [P] = 0 in $A_{n-i}(R)$.

  • PDF

Kaplansky-type Theorems, II

  • Chang, Gyu-Whan;Kim, Hwan-Koo
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.339-344
    • /
    • 2011
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, and D[X] be the polynomial ring over D. A prime ideal Q of D[X] is called an upper to zero in D[X] if Q = fK[X] ${\cap}$ D[X] for some f ${\in}$ D[X]. In this paper, we study integral domains D such that every upper to zero in D[X] contains a prime element (resp., a primary element, a t-invertible primary ideal, an invertible primary ideal).

A NOTE ON SKEW DERIVATIONS IN PRIME RINGS

  • De Filippis, Vincenzo;Fosner, Ajda
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.885-898
    • /
    • 2012
  • Let m, n, r be nonzero fixed positive integers, R a 2-torsion free prime ring, Q its right Martindale quotient ring, and L a non-central Lie ideal of R. Let D : $R{\rightarrow}R$ be a skew derivation of R and $E(x)=D(x^{m+n+r})-D(x^m)x^{n+r}-x^mD(x^n)x^r-x^{m+n}D(x^r)$. We prove that if $E(x)=0$ for all $x{\in}L$, then D is a usual derivation of R or R satisfies $s_4(x_1,{\ldots},x_4)$, the standard identity of degree 4.

ON QB-IDEALS OF EXCHANGE RINGS

  • Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.873-884
    • /
    • 2009
  • We characterize QB-ideals of exchange rings by means of quasi-invertible elements and annihilators. Further, we prove that every $2\times2$ matrix over such ideals of a regular ring admits a diagonal reduction by quasi-inverse matrices. Prime exchange QB-rings are studied as well.

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.

GENERALIZED DERIVATIONS ON SEMIPRIME RINGS

  • De Filippis, Vincenzo;Huang, Shuliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1253-1259
    • /
    • 2011
  • Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. If R admits a generalized derivation F associated with a derivation d such that c for all x, $y{\in}I$. Then either R is commutative or n = 1, d = 0 and F is the identity map on R. Moreover in case R is a semiprime ring and $(F([x,\;y]))^n=[x,\;y]$ for all x, $y{\in}R$, then either R is commutative or n = 1, $d(R){\subseteq}Z(R)$, R contains a non-zero central ideal and for all $x{\in}R$.

FUZZY IDEALS IN NEAR-RINGS

  • Hong, Sung-Min;Jun, Young-Bae;Kim, Hee-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.455-464
    • /
    • 1998
  • In this paper, we give another proof of Theorem 2.13 of [4] without using the sup property. For the homomorphic image $f(\mu)$ and preimage $f^{-1}(\nu)$ of fuzzy left (resp. right) ideals $\mu$ and $\nu$ respectively, we establish the chains of level left (resp. right) ideals of $f(\mu)$ and $f^{-1}(\nu)$, respectively. Moreover, we prove that a necessary condition for a fuzzy ideal $\mu$ of a near-ring $R$ to be prime is that $\mu$ is two-valued.

  • PDF

Derivations with Power Values on Lie Ideals in Rings and Banach Algebras

  • Rehman, Nadeem ur;Muthana, Najat Mohammed;Raza, Mohd Arif
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.397-408
    • /
    • 2016
  • Let R be a 2-torsion free prime ring with center Z, U be the Utumi quotient ring, Q be the Martindale quotient ring of R, d be a derivation of R and L be a Lie ideal of R. If $d(uv)^n=d(u)^md(v)^l$ or $d(uv)^n=d(v)^ld(u)^m$ for all $u,v{\in}L$, where m, n, l are xed positive integers, then $L{\subseteq}Z$. We also examine the case when R is a semiprime ring. Finally, as an application we apply our result to the continuous derivations on non-commutative Banach algebras. This result simultaneously generalizes a number of results in the literature.

COMMUTATIVITY WITH ALGEBRAIC IDENTITIES INVOLVING PRIME IDEALS

  • Mir, Hajar El;Mamouni, Abdellah;Oukhtite, Lahcen
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.723-731
    • /
    • 2020
  • The purpose of this paper is to study the structure of quotient rings R/P where R is an arbitrary ring and P is a prime ideal of R. Especially, we will establish a relationship between the structure of this class of rings and the behavior of derivations satisfying algebraic identities involving prime ideals. Furthermore, the characteristic of the quotient ring R/P has been determined in some situations.

ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF A TOPOLOGICAL LE-MODULE

  • Anjan Kumar Bhuniya;Manas Kumbhakar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • An le-module M over a commutative ring R is a complete lattice ordered additive monoid (M, ⩽, +) having the greatest element e together with a module like action of R. This article characterizes the le-modules RM such that the pseudo-prime spectrum XM endowed with the Zariski topology is a Noetherian topological space. If the ring R is Noetherian and the pseudo-prime radical of every submodule elements of RM coincides with its Zariski radical, then XM is a Noetherian topological space. Also we prove that if R is Noetherian and for every submodule element n of M there is an ideal I of R such that V (n) = V (Ie), then the topological space XM is spectral.