• Title/Summary/Keyword: (p, q)-Euler polynomials

Search Result 21, Processing Time 0.022 seconds

ON THE (p, q)-ANALOGUE OF EULER ZETA FUNCTION

  • RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.303-311
    • /
    • 2017
  • In this paper we define (p, q)-analogue of Euler zeta function. In order to define (p, q)-analogue of Euler zeta function, we introduce the (p, q)-analogue of Euler numbers and polynomials by generalizing the Euler numbers and polynomials, Carlitz's type q-Euler numbers and polynomials. We also give some interesting properties, explicit formulas, a connection with (p, q)-analogue of Euler numbers and polynomials. Finally, we investigate the zeros of the (p, q)-analogue of Euler polynomials by using computer.

SYMMETRIC IDENTITIES INVOLVING THE MODIFIED (p, q)-HURWITZ EULER ZETA FUNCTION

  • KIM, A HYUN;AN, CHAE KYEONG;LEE, HUI YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.555-565
    • /
    • 2018
  • The main subject of this paper is to introduce the (p, q)-Euler polynomials and obtain several interesting symmetric properties of the modified (p, q)-Hurwitz Euler Zeta function with regard to (p, q) Euler polynomials. In order to get symmetric properties, we introduce the new (p, q)-analogue of Euler polynomials $E_{n,p,q}(x)$ and numbers $E_{n,p,q}$.

SOME RELATIONSHIPS BETWEEN (p, q)-EULER POLYNOMIAL OF THE SECOND KIND AND (p, q)-OTHERS POLYNOMIALS

  • KANG, JUNG YOOG;AGARWAL, R.P.
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.219-234
    • /
    • 2019
  • We use the definition of Euler polynomials of the second kind with (p, q)-numbers to identify some identities and properties of these polynomials. We also investigate some relationships between (p, q)-Euler polynomials of the second kind, (p, q)-Bernoulli polynomials, and (p, q)-tangent polynomials by using the properties of (p, q)-exponential function.

SOME EXPLICIT PROPERTIES OF (p, q)-ANALOGUE EULER SUM USING (p, q)-SPECIAL POLYNOMIALS

  • KANG, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.37-56
    • /
    • 2020
  • In this paper we discuss some interesting properties of (p, q)-special polynomials and derive various relations. We gain some relations between (p, q)-zeta function and (p, q)-special polynomials by considering (p, q)-analogue Euler sum types. In addition, we derive the relationship between (p, q)-polylogarithm function and (p, q)-special polynomials.

q-DEDEKIND-TYPE DAEHEE-CHANGHEE SUMS WITH WEIGHT α ASSOCIATED WITH MODIFIED q-EULER POLYNOMIALS WITH WEIGHT α

  • Seo, Jong Jin;Araci, Serkan;Acikgoz, Mehmet
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Recently, q-Dedekind-type sums related to q-Euler polynomials was studied by Kim in [T. Kim, Note on q-Dedekind-type sums related to q-Euler polynomials, Glasgow Math. J. 54 (2012), 121-125]. It is aim of this paper to consider a p-adic continuous function for an odd prime to inside a p-adic q-analogue of the higher order Dedekind-type sums with weight related to modified q-Euler polynomials with weight by using Kim's p-adic q-integral.

A NOTE ON THE q-ANALOGUES OF EULER NUMBERS AND POLYNOMIALS

  • Choi, Jong-Sung;Kim, Tae-Kyun;Kim, Young-Hee
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.529-534
    • /
    • 2011
  • In this paper, we consider the q-analogues of Euler numbers and polynomials using the fermionic p-adic invariant integral on $\mathbb{Z}_p$. From these numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

A RELATION OF GENERALIZED q-ω-EULER NUMBERS AND POLYNOMIALS

  • Park, Min Ji;Kim, Young Rok;Lee, Hui Young
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.413-421
    • /
    • 2017
  • In this paper, we study the generalizations of Euler numbers and polynomials by using the q-extension with p-adic integral on $\mathbb{Z}_p$. We call these: the generalized q-${\omega}$-Euler numbers $E^{({\alpha})}_{n,q,{{\omega}}(a)$ and polynomials $E^{({\alpha})}_{n,q,{\omega}}(x;a)$. We investigate some elementary properties and relations for $E^{({\alpha})}_{n,q,{{\omega}}(a)$ and $E^{({\alpha})}_{n,q,{\omega}}(x;a)$.