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SOME IDENTITIES FOR MULTIPLE (h, p, q)-HURWITZ-EULER
ETA FUNCTION†

JONG JIN SEO, CHEON SEOUNG RYOO∗

Abstract. In this paper, we construct the multiple (h, p, q)-Hurwitz-Euler
eta function by generalizing the multiple Hurwitz-Euler eta function. We
get some explicit formulas and properties of the higher-order (h, p, q)-Euler
numbers and polynomials.
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1. Introduction

The field of the special functions such as the gamma and beta functions,
special polynomials, the hypergeometric functions, the zeta and related func-
tions, q-series, (p, q)-series, and series representations is a ever expanding area
in advanced mathematics, applied mathematics, probability, mathematical sta-
tistics, and physics. In particular, special polynomials play a fundamental role
in applied mathematics, physics, science, and industry(see [1-15]). Choi and
Srivastava presented a generalized Hurwitz formula and Hurwitz-Euler eta func-
tion(see [5, 6]). It is the purpose of this paper to introduce and investigate a
new some generalizations of the (p, q)-Euler numbers and polynomials, (p, q)-
Euler zeta function, (p, q)-Hurwiz-Euler zeta function. We call them multiple
(h, p, q)-Euler numbers and polynomials, multiple (h, p, q)-Euler zeta function,
and multiple (h, p, q)-Hurwitz-Euler eta function. The structure of the paper
is as follows: In Sect. 2, we define higher-order (h, p, q)-Euler numbers and
polynomials and derive some of their properties involving elementary proper-
ties, distribution relation, and so on. In Sect. 3, by using the higher-order
(h, p, q)-Euler numbers and polynomials, multiple (h, p, q)-Euler zeta function

Received March 4, 2022. Revised June 7, 2022. Accepted July 18, 2022. ∗Corresponding
author.

†This work was supported by a Research Grant of Pukyong National University(2021).
© 2022 KSCAM.

873



874 Jong Jin Seo, Cheon Seoung Ryoo

and multiple (h, p, q)-Hurwitz-Euler eta function are defined. We also contains
some connection formulae between the higher-order (h, p, q)-Euler polynomials
and the multiple (h, p, q)-Hurwitz-Euler eta function.

Throughout this paper, we always make use of the following notations: N
denotes the set of natural numbers, Z+ = N∪{0} denotes the set of nonnegative
integers, Z−

0 = {0,−1,−2,−3, . . .} denotes the set of nonpositive integers, Z
denotes the set of integers, R denotes the set of real numbers, and C denotes the
set of complex numbers. We use the notation

∞∑
k1=0

· · ·
∞∑
kr=0

=

∞∑
k1,··· ,kr=0

.

We would like to review definitions related to q-number and (p, q)-number used
in this paper. For any m ∈ N, q-number can be defined as follows

[m]q =
1− qm

1− q
=

m−1∑
i=0

qi = 1 + q + q2 + · · ·+ qm−1.

For z ∈ C, the (p, q)-number is defined by

[z]p,q =
pz − qz

p− q
, (p ̸= q).

With the (p, q)-number, the necessary elements of the (p, q)-calculus, namely,
(p, q)-integration, (p, q)-differentiation, (p, q)-exponential, were worked by many
mathematicians. Many (p, q)-extensions of some special functions and polyno-
mials have been studied(see [1, 2, 7, 12, 13, 14, 15]).

The binomial formulae are known as

(1− b)n =

n∑
k=0

(
n

k

)
(−b)k, where

(
n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
,

and
1

(1− b)n
= (1− b)−n =

∞∑
k=0

(
−n
k

)
(−b)k =

∞∑
k=0

(
n+ k − 1

i

)
bk.

Choi and Srivastava [5] constructed and studied the multiple Hurwitz-Euler eta
function ηr(s, a) defined by following r-ple series:

ηr(s, a) =

∞∑
k1,··· ,kr=0

(−1)k1+···+kr

(k1 + · · ·+ kr + a)s
, (Re(s) > 0; a > 0; r ∈ N).

It is known that ηr(s, a) can be continued analytically to be whole complex
s-plane. Inspired by their work, the (h, p, q)-extension of the multiple Hurwitz-
Euler eta function can be defined as follows: For s, x ∈ C with Re(x) > 0 and
r ∈ N, the multiple (h, p, q)-Hurwitz-Euler eta function η(r,h)p,q (s, x) is define by

η(r,h)p,q (s, x) = [2]rq

∞∑
k1,··· ,kr=0

(−1)k1+···+krphk1+···+hkrqk1+···+kr

[k1 + · · ·+ kr + x]sp,q
.
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Note that if p = 1, q → 1, then η(r,h)p,q (s, a) = 2rηr(s, a). Another type of multiple
(h, p, q)-Euler zeta function ζ

(r,h)
p,q (s) can be defined as follows. For s ∈ C, we

define

ζ(r,h)p,q (s) = [2]rq

∞∑
m=1

(
m+ r − 1

m

)
(−1)mphmqm

[m]sp,q
.

Observe that if r = 1, then ζ
(r,h)
p,q (s) = ζ

(h)
p,q (s)(see [13]). By using the sym-

metric properties about the multiple (h, p, q)-Hurwitz-Euler eta function, we
obtain symmetric identities about the higher-order (h, p, q)-Euler numbers and
polynomials. Firstly, we introduce the basic definitions related to higher-order
(h, p, q)-Euler numbers and polynomials.

Definition 1.1. The classical Euler polynomials En(x) are defined by the fol-
lowing generating function

2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
, (|t| < π).

When x = 0, En = En(0) are called the Euler numbers En.

Definition 1.2. For r ∈ N, the classical higher-order Euler polynomials E(r)
n (x)

are defined by the following generating function:(
2

et + 1

)r
ext =

∞∑
n=0

E(r)
n (x)

tn

n!
, (|t| < π).

As usual, the numbers E(r)
n = E

(r)
n (0) are called higher-order Euler numbers.

Much research has been done in the area of special functions by using (p, q)-
number(see [1, 2, 7, 12, 13, 15]). Some interesting properties of the (h, p, q)-Euler
numbers E(h)

n,p,q polynomials E(h)
n,p,q(x) were first investigated by Ryoo [13].

Definition 1.3. For 0 < q < p ≤ 1 and h ∈ Z, (h, p, q)-Euler numbers E(h)
n,p,q

and (h, p, q)-Euler polynomials E(h)
n,p,q(x) are defined by means of the generating

functions
∞∑
n=0

E(h)
n,p,q

tn

n!
= [2]q

∞∑
l=0

(−1)lphlqle[l]p,qt

and
∞∑
n=0

E(h)
n,p,q(x)

tn

n!
= [2]q

∞∑
l=0

(−1)lphlqle[l+x]p,qt

respectively.
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2. Higher-order (h, p, q)-Euler numbers and polynomials

In this section, we consider the higher-order (h, p, q)-Euler numbers and poly-
nomials as follows:
Definition 2.1. For 0 < q < p ≤ 1, h ∈ Z, and r ∈ N, higher-order (h, p, q)-
Euler numbers E(r,h)

n,p,q and higher-order (h, p, q)-Euler polynomials E(r,h)
n,p,q(x) are

defined by the following generating functions
∞∑
n=0

E(r,h)
n,p,q(x)

tn

n!
= [2]rq

∞∑
k1,··· ,kr=0

(−q)k1+···+krph(k1+···+kr)e[k1+···+kr+x]p,qt,

(1)
and

∞∑
n=0

E(r,h)
n,p,q

tn

n!
= [2]rq

∞∑
k1,··· ,kr=0

(−q)k1+···+krph(k1+···+kr)e[k1+···+kr]p,qt, (2)

respectively.

Note that if r = 1, then E(r,h)
n,p,q = E

(h)
n,p,q and E(r,h)

n,p,q(x) = E
(h)
n,p,q(x). Observe

that if p = 1, q → 1, then E(r,h)
n,p,q → E

(r)
n and E(r,h)

n,p,q(x) → E
(r)
n (x).

From (1) and (2), we note that
Theorem 2.2. For 0 < q < p ≤ 1, h ∈ Z, and r ∈ N, we have

E(r,h)
n,p,q(x+ y) =

n∑
l=0

(
n

l

)
plxqy(n−l)[y]lp,qE

(r,h+l)
n−l,p,q(x),

E(r)
n,p,q(x) =

n∑
l=0

(
n

l

)
qxl[x]lp,qE

(r,h+l)
n−l,p,q.

(3)

Theorem 2.3. For r ∈ N and h ∈ Z, we have

E(r,h)
n,p,q(x) = [2]rq

∞∑
k1,··· ,kr=0

(−q)k1+···+krphk1+···+hkr [k1 + · · ·+ kr + x]np,q

=
[2]rq

(p− q)n

n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x

(
1

1 + ql+1ph+n−l

)r
.

Proof. By the Taylor series expansion of e[x]p,qt, we have
∞∑
l=0

E
(r)
l,p,q(x)

tl

l!

= [2]rq

∞∑
k1,··· ,kr=0

(−1)k1+···+krphk1+···+hkrqk1+···+kre[k1+···+kr+x]p,qt

=

∞∑
l=0

[2]rq

∞∑
k1,··· ,kr=0

(−q)k1+···+krph(k1+···+kr)[k1 + · · ·+ kr + x]lp,q

 tl

l!
.
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The first part of the theorem follows when we compare the coefficients of tl

l! in
the above equation. By (p, q)-numbers and binomial expansion, we also note
that

E(r,h)
n,p,q(x) = [2]rq

∞∑
k1,··· ,kr=0

(−q)k1+···+krph(k1+···+kr)[k1 + · · ·+ kr + x]np,q

= [2]rq

∞∑
k1,··· ,kr=0

(−q)k1+···+krph(k1+···+kr)
(
pk1+···+kr+x − qk1+···+kr+x

p− q

)n

=
[2]rq

(p− q)n

n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x

×
∞∑

k1,··· ,kr=0

(−1)k1+···+krq(l+1)(k1+···+kr)p(h+n−l)(k1+···+kr)

=
[2]rq

(p− q)n

n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x

(
1

1 + ql+1ph+n−l

)r
.

(4)
This completes the proof of Theorem 2.3. □

Theorem 2.4. For r ∈ N, we have

E(r,h)
n,p,q(x) = [2]rq

∞∑
m=0

(
r +m− 1

m

)
(−1)mqmphm[m+ x]np,q.

Proof. By Taylor-Maclaurin series expansion of (1− a)−n, we have(
1

1 + ql+1pn−l+h

)r
=

∞∑
m=0

(
m+ r − 1

m

)
(−1)m(ql+1pn−l+h)m.

Also, by (4) and binomial expansion, one can obtain the desired result immediately.□

For d ∈ N with d ≡ 1( mod 2), by Theorem 2.3, we can show

E(r,h)
n,p,q(x) =

[2]rq
(p− q)n

n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x

×
d−1∑

a1,··· ,ar=0

∞∑
k1,··· ,kr=0

(−1)a1+···+ar (−1)k1+···+kr

× q(l+1)(a1+dk1+···+ar+dkr)p(n−l+h)(a1+dk1+···+ar+dkr).
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Theorem 2.5. (Distribution relation of higher-order (h, p, q)-Euler polynomi-
als). For d ∈ N with d ≡ 1( mod 2), we have

E(r,h)
n,p,q(x)

=
[2]rq
[2]r
qd
[d]np,q

d−1∑
a1,··· ,ar=0

(−q)a1+···+arpha1+···+harE
(r,h)

n,pd,qd

(
a1 + · · ·+ ar + x

d

)
.

Proof. Since

E
(r,h)

n,pd,qd

(
a1 + · · ·+ ar + x

d

)
=

[2]rqd

(pd − qd)n

n∑
l=0

(
n

l

)
(−1)lql(a1+···+ar+x)p(n−l)(a1+···+ar+x)

(
1

1 + qd(l+1)pd(n−l+h)

)r
,

we have
d−1∑

a1,··· ,ar=0

(−q)a1+···+arpha1+···+harE
(r,h)

n,pd,qd

(
a1 + · · ·+ ar + x

d

)

=
[2]rqd

(pd − qd)n

n∑
l=0

(
n

l

)
(−1)lqlxp(n−l)x

×
d−1∑

a1,··· ,ar=0

(−1)a1+···+arq(l+1)(a1+···+ar)p(n−l+h)(a1+···+ar)
(

1

1 + qd(l+1)pd(n−l+h)

)r
.

(5)
Hence, by (5) and Theorem 2.3, we have

[2]rq
[2]r
qd
[d]np,q

d−1∑
a1,··· ,ar=0

(−q)a1+···+arpha1+···+harE
(r,h)

n,pd,qd

(
a1 + · · ·+ ar + x

d

)

=
[2]rq

(p− q)n

n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x

(
1

1 + ql+1pn−l+h

)r
.

This completes the proof of Theorem 2.5. □

3. Multiple (h, p, q)-Hurwitz-Euler eta function

In this section, we define multiple (h, p, q)-Hurwitz-Euler eta function. This
function interpolates the higher-order (h, p, q)-Euler polynomials at negative in-
tegers.

Choi and Srivastava [5] defined the multiple Hurwitz-Euler eta function ηr(s, a)
by means of

ηr(s, a) =

∞∑
k1,··· ,kr=0

(−1)k1+···+kr

(k1 + · · ·+ kr + a)s
, (Re(s) > 0; a > 0; r ∈ N).
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It is known that ηr(s, a) can be continued analytically to be whole complex s-
plane(see [5]). The (h, p, q)-extension of the multiple Hurwitz-Euler eta function
can be defined as follows:

Definition 3.1. For s, x ∈ C with Re(x) > 0, the multiple (h, p, q)-Hurwitz-
Euler eta function η(r,h)p,q (s, x) is define by

η(r,h)p,q (s, x) = [2]rq

∞∑
k1,··· ,kr=0

(−1)k1+···+krph(k1+···+kr)qk1+···+kr

[k1 + · · ·+ kr + x]sp,q
. (6)

Observe that if p = 1, q → 1, then 2rη
(r,h)
p,q (s, a) = ηr(s, a). Let

F (r,h)
p,q (t, x) =

∞∑
n=0

E(r,h)
n,p,q(x)

tn

n!

= [2]rq

∞∑
k1,··· ,kr=0

(−1)k1+···+krph(k1+···+kr)qk1+···+kre[k1+···+kr+x]p,qt.

(7)

Theorem 3.2. For r ∈ N, we have

η(r,h)p,q (s, x) =
1

Γ(s)

∫ ∞

0

F (r,h)
p,q (x,−t)ts−1dt, (8)

where Γ(s) =
∫∞
0
zs−1e−zdz.

Proof. From (7) and Definition 3.1, we get

η(r,h)p,q (s, x)

= [2]rq

∞∑
k1,··· ,kr=0

(−1)k1+···+krph(k1+···+kr)qk1+···+kr

[k1 + · · ·+ kr + x]sp,q

= [2]rq
1

Γ(s)

∞∑
k1,··· ,kr=0

(−1)k1+···+krph(k1+···+kr)qk1+···+kr

[k1 + · · ·+ kr + x]sp,q

∫ ∞

0

zs−1e−zdz

=
[2]rq
Γ(s)

∞∑
k1,··· ,kr=0

(−q)k1+···+krph(k1+···+kr)
∫ ∞

0

e[k1+···+kr+x]p,qtts−1dt

=
1

Γ(s)

∫ ∞

0

F (r,h)
p,q (x,−t)ts−1dt.

This completes the proof of Theorem 3.2. □

The value of multiple (h, p, q)-Hurwitz-Euler eta function η(r,h)p,q (s, x) at neg-
ative integers is given explicitly by the following theorem:

Theorem 3.3. Let n ∈ N . Then we obtain
η(r,h)p,q (−n, x) = E(r,h)

n,p,q(x).
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Proof. Again, by (7) and (8), we have

η(r,h)p,q (s, x)

=
1

Γ(s)

∫ ∞

0

F (r,h)
p,q (x,−t)ts−1dt

=
1

Γ(s)

∞∑
m=0

E(r,h)
m,p,q(x)

(−1)m

m!

∫ ∞

0

tm+s−1dt.

(9)

We note that

Γ(−n) =
∫ ∞

0

e−zz−n−1dz

= lim
z→0

2πi
1

n!

(
d

dz

)n
(zn+1e−zz−n−1)

= 2πi
(−1)n

n!
.

(10)

For n ∈ N, let us take s = −n in (8). Then, by (9), (10), and Cauchy residue
theorem, we have

η(r,h)p,q (−n, x) = lim
s→−n

1

Γ(s)

∞∑
m=0

E(r,h)
m,p,q(x)

(−1)m

m!

∫ ∞

0

tm−n−1dt

= 2πi

(
lim
s→−n

1

Γ(s)

)(
E(r,h)
n,p,q(x)

(−1)n

n!

)
= 2πi

(
1

2πi (−1)n

n!

)(
E(r,h)
n,p,q(x)

(−1)n

n!

)
= E(r,h)

n,p,q(x).

This completes the proof of Theorem 3.3. □
Let

F (r,h)
p,q (t) =

∞∑
l=0

E
(r,h)
l,p,q

tl

l!

= [2]rq

∞∑
k1,··· ,kr=0

(−1)k1+···+krphk1+···+hkrqk1+···+kre[k1+···+kr]p,qt.

(11)

By the l-th differentiation on both side of (11) at t = 0, we obtain the following
dl

dtl
F (r,h)
p,q (t)

∣∣∣∣
t=0

= [2]rq

∞∑
k1,··· ,kr=0

(−1)k1+···+krphk1+···+hkrqk1+···+kr [k1 + · · ·+ kr]
l
p,q

= E
(r,h)
l,p,q , (l ∈ N).

(12)
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By using the above equation, we are now ready to define multiple (h, p, q)-Euler
eta function. We define multiple (h, p, q)-Euler eta function as follows:

Definition 3.4. For s ∈ C, we define

η(r,h)p,q (s) = [2]rq

∞∑
k1,··· ,kr=1

(−1)k1+···+krphk1+···+hkrqk1+···+kr

[k1 + · · ·+ kr]sp,q
.

Relation between ζ(r,h)p,q (s) and = E
(r,h)
n,p,q is given by the following theorem.

Theorem 3.5. Let n ∈ N, We have
ζ(r,h)p,q (−n) = E(r,h)

n,p,q.

By (4), we have
∞∑
n=0

E(r,h)
n,p,q

tn

n!
= [2]rq

∞∑
m=0

(
m+ r − 1

m

)
(−1)mqmphme[m]p,qt.

By using Taylor series of e[m]p,qt in the above, we have
∞∑
n=0

E(r,h)
n,p,q

tn

n!
=

∞∑
n=0

(
[2]rq

∞∑
m=0

(
m+ r − 1

m

)
(−1)mqmqhm[m]np,q

)
tn

n!
.

By comparing coefficients tn

n! in the above equation, we have

E(r,h)
n,p,q = [2]rq

∞∑
m=0

(
m+ r − 1

m

)
(−1)mqmqhm[m]np,q. (13)

By using (13), another type of multiple (h, p, q)-Euler zeta function can be de-
fined as follows.

Definition 3.6. For s ∈ C, we define

ζ(r,h)p,q (s) = [2]rq

∞∑
m=1

(
m+ r − 1

m

)
(−1)mphmqm

[m]sp,q
. (14)

The function ζ(h)p,q (s) interpolates the number E(r,h)
n,p,q at negative integers. Sub-

stituting s = −n with n ∈ N into (14), and using (13), we obtain the following
theorem and corollary:

Theorem 3.7. Let l ∈ N. We have
η(r,h)p,q (−l) = ζ(r,h)p,q (−l) = E

(r,h)
l,p,q .

Corollary 3.8. For 0 < q < p ≤ 1, h ∈ Z, r ∈ N, and n ∈ N, we have
∞∑
m=1

(
m+ r − 1

m

)
(−1)mphmqm[m]np,q

=

∞∑
k1,··· ,kr=1

(−1)k1+···+krphk1+···+hkrqk1+···+kr [k1 + · · ·+ kr]
n
p,q.
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