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ON THE (p, q)-ANALOGUE OF EULER ZETA FUNCTION

CHEON SEOUNG RYOO

Abstract. In this paper we define (p, q)-analogue of Euler zeta function.

In order to define (p, q)-analogue of Euler zeta function, we introduce the
(p, q)-analogue of Euler numbers and polynomials by generalizing the Euler
numbers and polynomials, Carlitz’s type q-Euler numbers and polynomi-

als. We also give some interesting properties, explicit formulas, a connec-
tion with (p, q)-analogue of Euler numbers and polynomials. Finally, we
investigate the zeros of the (p, q)-analogue of Euler polynomials by using
computer.
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1. Introduction

Many mathematicians have studied in the area of the Bernoulli numbers and
polynomials, Euler numbers and polynomials, Genocchi numbers and polyno-
mials, tangent numbers and polynomials(see [1-13]). In this paper, we define
(p, q)-analogue of Euler polynomials and numbers and study some properties of
the (p, q)-analogue of Euler polynomials and numbers.

Throughout this paper, we always make use of the following notations: N
denotes the set of natural numbers, Z+ = N∪{0} denotes the set of nonnegative
integers, Z−

0 = {0,−1,−2,−2, . . .} denotes the set of nonpositive integers, Z
denotes the set of integers, R denotes the set of real numbers, and C denotes the
set of complex numbers.

We remember that the classical Euler numbers En and Euler polynomials
Tn(x) are defined by the following generating functions(see [1, 2, 3, 4, 5])

2

et + 1
=

∞∑
n=0

En
tn

n!
, (|t| < π). (1.1)
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and (
2

et + 1

)
ext =

∞∑
n=0

En(x)
tn

n!
, (|t| < π). (1.2)

respectively.
The (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
.

It is clear that (p, q)-number contains symmetric property, and this number is
q-number when p = 1. In particular, we can see limq→1[n]p,q = n with p = 1.

By using (p, q)-number, we define the (p, q)-analogue of Euler polynomials and
numbers, which generalized the previously known numbers and polynomials,
including the Carlitz’s type q-Euler numbers and polynomials. We begin by
recalling here the Carlitz’s type q-Euler numbers and polynomials(see 1, 2, 3, 4,
5, 13]).

Definition 1.1. The Carlitz’s type q-Euler polynomials En,q(x) are defined by
means of the generating function

Fq(t, x) =

∞∑
n=0

En,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m+x]qt. (1.3)

and their values at x = 0 are called the Carlitz’s type q-Euler numbers and
denoted En,q(see [12]).

Many kinds of of generalizations of these polynomials and numbers have been
presented in the literature(see [1-13]). Based on this idea, we generalize the
Carlitz’s type q-Euler number En,q and q-Euler polynomials En,q(x). It follows
that we define the following (p, q)-analogues of the the Carlitz’s type q-Euler
number En,q and q-Euler polynomials En,q(x).

In the following section, we define (p, q)-analogue of Euler zeta function. We
introduce the (p, q)-analogue of Euler polynomials and numbers. After that we
will investigate some their properties. Finally, we investigate the zeros of the
(p, q)-analogue of Euler polynomials by using computer.

2. (p, q)-analogue of Euler numbers and polynomials

In this section, we define (p, q)-analogue of Euler numbers and polynomials
and provide some of their relevant properties.

Definition 2.1. For 0 < q < p ≤ 1, the Carlitz’s type (p, q)-Euler numbers
En,p,q and polynomials En,p,q(x) are defined by means of the generating func-
tions

Fp,q(t) =

∞∑
n=0

En,p,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m]p,qt. (2.1)
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and

Fp,q(t, x) =

∞∑
n=0

En,p,q(x)
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m+x]p,qt, (2.2)

respectively.

Setting p = 1 in (2.1) and (2.2), we can obtain the corresponding definitions
for the Carlitz’s type q-Euler number En,q and q-Euler polynomials En,q(x)
respectively. Obviously, if we put p = 1, then we have

En,p,q(x) = En,q(x), En,p,q = En,q.

Putting p = 1, we have

lim
q→1

En,p,q(x) = En(x), lim
q→1

En,p,q = En.

By using above equation (2.1), we have
∞∑

n=0

En,p,q
tn

n!
= [2]q

∞∑
m=0

(−1)mqme[m]p,qt

=
∞∑

n=0

(
[2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + ql+1pn−l

)
tn

n!
.

(2.3)

By comparing the coefficients tn

n! in the above equation, we have the following
theorem.

Theorem 2.2. For n ∈ Z+, we have

En,p,q = [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + ql+1pn−l
.

If we put p = 1 in the above theorem we obtain(cf. [12, Theorem 1])

En,p,q = [2]q

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + ql+1
.

By (2.2), we obtain

En,p,q(x) = [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x 1

1 + ql+1pn−l
. (2.4)

By using (2.2) and (2.4), we obtain
∞∑

n=0

En,p,q(x)
tn

n!

=
∞∑

n=0

(
[2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x 1

1 + ql+1pn−l

)
tn

n!

= [2]q

∞∑
m=0

(−1)mqme[m+x]p,qt.

(2.5)
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Since [x+ y]p,q = py[x]p,q + qx[y]p,q, we see that

En,p,q(x)

= [2]q

n∑
l=0

(
n

l

)
[x]n−l

p,q qxl
l∑

k=0

(
l

k

)
(−1)k

(
1

p− q

)l
1

1 + qk+1pn−k
.

(2.6)

Next, we introduce Carlitz’s type (h, p, q)-Euler polynomials E
(h)
n,p,q(x).

Definition 2.3. The Carlitz’s type (h, p, q)-Euler polynomials E
(h)
n,p,q(x) are de-

fined by

E(h)
n,p,q(x) = [2]q

∞∑
m=0

(−1)mqmphm[m+ x]np,q. (2.7)

By using (2.7) and (p, q)-number, we have the following theorem.

Theorem 2.4. For n ∈ Z+, we have

E(h)
n,p,q(x) = [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqxlp(n−l)x 1

1 + ql+1pn−l+h
.

By (2.6) and Theorem 2.4, we have

En,p,q(x) =
n∑

l=0

(
n

l

)
[x]n−l

p,q qxlE
(n−l)
l,p,q

The following elementary properties of the (p, q)-analogue of Euler numbers
En,p,q and polynomials En,p,q(x) are readily derived form (2.1) and (2.2). We,
therefore, choose to omit details involved.

Theorem 2.5. (Distribution relation) For any positive integer m(=odd), we
have

En,p,q(x) =
[2]q
[2]qm

[m]np,q

m−1∑
a=0

(−1)aqaEn,pm,qm

(
a+ x

m

)
, n ∈ N0.

Theorem 2.6. (Property of complement)

En,p−1,q−1(1− x) = (−1)npnqnEn,p,q(x).

Theorem 2.7. For n ∈ Z+, we have

qEn,p,q(1) + En,p,q =

{
[2]q, if n = 0,
0, if n ̸= 0.

By (2.1) and (2.2), we get

− [2]q

∞∑
l=0

(−1)l+nql+ne[l+n]p,qt + [2]q

∞∑
l=0

(−1)lqle[l]p,qt

= [2]q

n−1∑
l=0

(−1)lqle[l]p,qt.

(2.8)
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Hence we have

(−1)n+1qn
∞∑

m=0

Em,p,q(n)
tm

m!
+

∞∑
m=0

Em,p,q
tm

m!

=
∞∑

m=0

(
[2]q

n−1∑
l=0

(−1)lql[l]mp,q

)
tm

m!
.

(2.9)

By comparing the coefficients tm

m! on both sides of (2.9), we have the following
theorem.

Theorem 2.8. For n ∈ Z+, we have

n−1∑
l=0

(−1)lql[l]mp,q =
(−1)n+1qnEm,p,q(n) + Em,p,q

[2]q
.

3. (p, q)-analogue of Euler zeta function

By using (p, q)-analogue of Euler numbers and polynomials, (p, q)-Euler zeta
function and Hurwitz (p, q)-Euler zeta functions are defined. These functions in-
terpolate the (p, q)-analogue of Euler numbers En,p,q, and polynomials En,p,q(x),
respectively. From (2.1), we note that

dk

dtk
Fp,q(t)

∣∣∣∣
t=0

= [2]q

∞∑
m=0

(−1)nqm[m]kp,q

= Ek,p,q, (k ∈ N).

By using the above equation, we are now ready to define (p, q)-Euler zeta func-
tions.

Definition 3.1. Let s ∈ C with Re(s) > 0.

ζp,q(s) = [2]q

∞∑
n=1

(−1)nqn

[n]sp,q
. (3.1)

Note that ζp,q(s) is a meromorphic function on C. Note that, if p = 1, q → 1,
then ζp,q(s) = ζE(s) which is the Euler zeta functions(see [4]). Relation between
ζp,q(s) and Ek,p,q is given by the following theorem.

Theorem 3.2. For k ∈ N, we have

ζp,q(−k) = Ek,p,q.

Observe that ζp,q(s) function interpolates Ek,p,q numbers at non-negative in-
tegers. By using (2.2), we note that

dk

dtk
Fp,q(t, x)

∣∣∣∣
t=0

= [2]q

∞∑
m=0

(−1)mqm[m+ x]kp,q (3.2)
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and (
d

dt

)k
( ∞∑

n=0

En,p,q(x)
tn

n!

)∣∣∣∣∣
t=0

= Ek,p,q(x), for k ∈ N. (3.3)

By (3.2) and (3.3), we are now ready to define the Hurwitz (p, q)-Euler zeta
functions.

Definition 3.3. Let s ∈ C with Re(s) > 0 and x /∈ Z−
0 .

ζp,q(s, x) = [2]q

∞∑
n=0

(−1)nqn

[n+ x]sp,q
. (3.4)

Note that ζp,q(s, x) is a meromorphic function on C. Obverse that, if p = 1 and
q → 1, then ζp,q(s, x) = ζE(s, x) which is the Hurwitz Euler zeta functions(see [4,
5]). Relation between ζp,q(s, x) and Ek,p,q(x) is given by the following theorem.

Theorem 3.4. For k ∈ N, we have

ζp,q(−k, x) = Ek,p,q(x).

Observe that ζp,q(−k, x) function interpolates Ek,p,q(x) numbers at non-negative
integers.

4. Zeros of the (p, q)-analogue of Euler polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the
zeros of the (p, q)-analogue of Euler polynomials En,p,q(x). The (p, q)-analogue
of Euler polynomials En,p,q(x) can be determined explicitly. A few of them are

E0,p,q(x) = 1,

E1,p,q(x) = − (1 + q)(−px − pxq2 + qx + pq1+x)

(p− q)(1 + pq)(1 + q2)
,

E2,p,q(x) =
p2x + p1+2xq2 + p2xq3 + p1+2xq5 − 2pxqx + q2x − 2p2+xq1+x

(p− q)2(1 + p2q)(1− q + q2)(1 + pq2)

− 2pxq3+x − 2p2+xq4+x + p2q1+2x + pq2+2x + p3q3+2x

(p− q)2(1 + p2q)(1− q + q2)(1 + pq2)
.

Our numerical results for approximate solutions of real zeros of En,p,q(x) are
displayed(Tables 1, 2).
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Table 1. Numbers of real and complex zeros of En,p,q(x)

degree n real zeros complex zeros

1 1 0
2 2 0
3 1 2
4 2 2
5 1 4
6 2 4
7 1 6
10 2 8
15 1 14
20 2 18
25 1 24
30 2 28
35 1 34
40 2 38
45 1 44

In Table 1, we choose p = 1/2 and q = 1/10.

Next, we calculated an approximate solution satisfying (p, q)-analogue of Eu-
ler polynomials En,p,q(x) = 0 for x ∈ R. The results are given in Table 2.

Table 2. Approximate solutions of En,p,q(x) = 0, p = 1/2, q = 1/10

degree n x

1 0.0241325

2 −0.0706366, 0.085358

3 0.133545

4 −0.119556, 0.168612

5 0.194723

6 −0.141066, 0.21479

We investigate the beautiful zeros of the (p, q)-analogue of Euler polynomials
En,p,q(x) by using a computer. We plot the zeros of the (p, q)-analogue of Euler
polynomials En,p,q(x) for x ∈ C(Figure 1). In Figure 1(top-left), we choose
n = 40, p = 1/2 and q = 1/4. In Figure 1(top-right), we choose n = 40, p = 1/2
and q = 1/6 . In Figure 1(bottom-left), we choose n = 40, p = 1/2 and q = 1/8
. In Figure 1(bottom-right), we choose n = 40, p = 1/2 and q = 1/10.
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Figure 1. Zeros of T
(k)
n,p,q(x)

We observe a remarkable regular structure of the real roots of the (p, q)-
analogue of Euler polynomials En,p,q(x). We also hope to verify a remarkable
regular structure of the real roots of the (p, q)-analogue of Euler polynomials
En,p,q(x)(Table 1). By numerical computations, we will make a series of the
following conjectures:

Conjecture 4.1. Prove that En,p,q(x), x ∈ C, has Im(x) = 0 reflection
symmetry analytic complex functions. However, En,p,q(x) has not Re(x) = a
reflection symmetry for a ∈ R.

Using computers, many more values of n have been checked. It still remains
unknown if the conjecture fails or holds for any value n(see Figure 1). We are
able to decide if En,p,q(x)) = 0 has n distinct solutions(see Tables 1, 2).
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Conjecture 4.2. Prove that En,p,q(x) = 0 has n distinct solutions.

Since n is the degree of the polynomial En,p,q(x), the number of real zeros
REn,p,q(x) lying on the real plane Im(x) = 0 is then REn,p,q(x) = n− CEn,p,q(x),
where CEn,p,q(x) denotes complex zeros. See Table 1 for tabulated values of
REn,p,q(x) and CEn,p,q(x). The author has no doubt that investigations along
these lines will lead to a new approach employing numerical method in the
research field of the (p, q)-analogue of Euler polynomials En,p,q(x) which appear
in mathematics and physics. The reader may refer to [6, 7, 8, 9, 10, 12] for the
details.
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