• Title/Summary/Keyword: (Max, +)-Algebra

Search Result 33, Processing Time 0.018 seconds

Stationary Waiting Times in Simple Fork-and-Join Queues with Finite Buffers and Communication Blocking (통신차단규칙을 따르는 유한버퍼 단순 조립형 대기행렬 망에서의 안정대기시간)

  • Seo, Dong-Won;Lee, Seung-Man
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.109-117
    • /
    • 2010
  • In this study, we consider stationary waiting times in a simple fork-and-join type queue which consists of three single-server machines, Machine 1, Machine 2, and Assembly Machine. We assume that the queue has a renewal arrival process and that independent service times at each node are either deterministic or non-overlapping. We also assume that the Machines 1 and 2 have an infinite buffer capacity whereas the Assembly Machine has two finite buffers, one for each machine. Services at each machine are given by FIFO service discipline and a communication blocking policy. We derive the explicit expressions for stationary waiting times at all nodes as a function of finite buffer capacities by using (max,+)-algebra. Various characteristics of stationary waiting times such as mean, higher moments, and tail probability can be computed from these expressions.

Structures of Fuzzy Relations

  • Min, K.C
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.17-21
    • /
    • 1992
  • In this paper we consider the notion of fuzzy relation as a generalization of that of fuzzy set. For a complete Heyting algebra L. the category set(L) of all L-fuzzy sets is shown to be a bireflective subcategory of the category Rel(L) of all L-fuzzy relations and L-fuzzy relation preserving maps. We investigate categorical structures of subcategories of Rel(L) in view of quasitopos. Among those categories, we include the category L-fuzzy similarity relations with respect to both max-min and max-product compositions, respectively, as a cartesian closed topological category. Moreover, we describe exponential objects explicitly in terms of function space.

  • PDF

The Structure of Walled Signed Brauer Algebras

  • Kethesan, Balachandran
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1047-1067
    • /
    • 2016
  • In this paper, a new class of diagram algebras which are subalgebras of signed brauer algebras, called the Walled Signed Brauer algebras denoted by ${\overrightarrow{D}}_{r,s}(x)$, where $r,s{\in}{\mathbb{N}}$ and x is an indeterminate are introduced. A presentation of walled signed Brauer algebras in terms of generators and relations is given. The cellularity of a walled signed Brauer algebra is established. Finally, ${\overrightarrow{D}}_{r,s}(x)$, is quasi- hereditary if either the characteristic of a field, say p, p = 0 or p > max(r, s) and either $x {\neq}0$ or x = 0 and $r{\neq}s$.

Stationary Waiting Times in m-node Tandem Queues with Communication Blocking

  • Seo, Dong-Won;Lee, Ho-Chang;Ko, Sung-Seok
    • Management Science and Financial Engineering
    • /
    • v.14 no.1
    • /
    • pp.23-34
    • /
    • 2008
  • In this study, we consider stationary waiting times in a Poisson driven single-server m-node queues in series. We assume that service times at nodes are independent, and are either deterministic or non-overlapped. Each node excluding the first node has a finite waiting line and every node is operated under a FIFO service discipline and a communication blocking policy (blocking before service). By applying (max, +)-algebra to a corresponding stochastic event graph, a special case of timed Petri nets, we derive the explicit expressions for stationary waiting times at all areas, which are functions of finite buffer capacities. These expressions allow us to compute the performance measures of interest such as mean, higher moments, or tail probability of waiting time. Moreover, as applications of these results, we introduce optimization problems which determine either the biggest arrival rate or the smallest buffer capacities satisfying probabilistic constraints on waiting times. These results can be also applied to bounds of waiting times in more general systems. Numerical examples are also provided.

Application of (Max, +)-algebra to the Waiting Times in Deterministic 3-node Tandem Queues with Blocking ((Max, +)-대수를 이용한 3-노드 유한 버퍼 일렬대기행렬에서의 대기시간 분석)

  • Seo Dong-Won
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • In this paper, we consider characteristics of waiting times in s1n91e-server 3-node tandem queues with finite buffers, a Poisson arrival process and deterministic service times at all nodes. There are three buffers : one at the first node is infinite and the others are finite. We obtain the fact that sojourn time or departure process is independent of the capacities of the finite buffers and does not depend on the order of service times, which are the same results in the literature. Moreover, the explicit expressions of stationary waiting times in all areas of the systems can be derived as functions of the finite buffer capacities. We also disclose a relationship of waiting times in subareas of the systems between two blocking policies communication and manufacturing. Some numerical examples are also provided.

Application of (Max, +)-algebra to the Waiting Times in Deterministic 2-node Tandem Queues with Blocking ((Max, +)-대수를 이용한 2-노드 유한 버퍼 일렬대기행렬에서의 대기시간 분석)

  • Seo Dong-Won
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.149-159
    • /
    • 2005
  • In this study, we consider characteristics of stationary waiting times in single-server 2-node tandem queues with a finite buffer, a Poisson arrival process and deterministic service times. The system has two buffers: one at the first node is infinite and the other one at the second node is finite. We show that the sojourn time or departure process does not depend on the capacity of the finite buffer and on the order of nodes (service times), which are the same as the previous results. Furthermore, the explicit expressions of waiting times at the first node are given as a function of the capacity of the finite buffer and we are able to disclose a relationship of waiting times between under communication blocking and under manufacturing blocking. Some numerical examples are also given.

Comparison of DBR with CONWIP in a Production Line with Constant Processing Times (상수 공정 시간을 갖는 라인 생산 시스템에서 DBR과 CONWIP의 성능 비교 분석)

  • Lee, Hochang;Seo, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.11-24
    • /
    • 2012
  • We compared a DBR(drum-buffer-rope) system with a CONWIP(constant work-in-process) system in a production line with constant processing times. Based on the observation that a WIP-controlled line production system such as DBR and CONWIP is equivalent to a m-node tandem queue with finite buffer, we applied a max-plus algebra based solution method for the tandem queue to evaluate the performance of two systems. Numerical examples with 6 workstations were also used to demonstrate the proposed analysis. The mathematical analyses support that CONWIP outperforms DBR in terms of expected waiting time and WIP. Unlike the CONWIP case, sequencing workstations in a DBR affects the performance of the system. Delaying a bottleneck station in a DBR reduces expected waiting time.

Optimization of Max-Plus based Neural Networks using Genetic Algorithms (유전 알고리즘을 이용한 Max-Plus 기반의 뉴럴 네트워크 최적화)

  • Han, Chang-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.57-61
    • /
    • 2013
  • A hybrid genetic algorithm based learning method for the morphological neural networks (MNN) is proposed. The morphological neural networks are based on max-plus algebra, therefore, it is difficult to optimize the coefficients of MNN by the learning method with derivative operations. In order to solve the difficulty, a hybrid genetic algorithm based learning method to optimize the coefficients of MNN is used. Through the image compression/reconstruction experiment using test images extracted from standard image database(SIDBA), it is confirmed that the quality of the reconstructed images obtained by the proposed method is better than that obtained by the conventional neural networks.

Optimal Buffer Allocation in Tandem Queues with Communication Blocking

  • Seo, Dong-Won;Ko, Sung-Seok;Jung, Uk
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.86-88
    • /
    • 2009
  • In this letter, we consider an m-node tandem queue (queues in series) with a Poisson arrival process and either deterministic or non-overlapping service times. With the assumption that each node has a finite buffer except for the first node, we show the non-increasing convex property of stationary waiting time with respect to the finite buffer capacities. We apply it to an optimization problem which determines the smallest buffer capacities subject to probabilistic constraints on stationary waiting times.

  • PDF

Explicit Formulae for Characteristics of Finite-Capacity M/D/1 Queues

  • Seo, Dong-Won
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.609-616
    • /
    • 2014
  • Even though many computational methods (recursive formulae) for blocking probabilities in finite-capacity M/D/1 queues have already been produced, these are forms of transforms or are limited to single-node queues. Using a distinctly different approach from the usual queueing theory, this study introduces explicit (transform-free) formulae for a blocking probability, a stationary probability, and mean sojourn time under either production or communication blocking policy. Additionally, the smallest buffer capacity subject to a given blocking probability can be determined numerically from these formulae. With proper selection of the overall offered load ${\rho}$, the approach described herein can be applicable to more general queues from a computational point of view if the explicit expressions of random vector $D_n$ are available.