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ABSTRACT⎯In this letter, we consider an m-node tandem 
queue (queues in series) with a Poisson arrival process and 
either deterministic or non-overlapping service times. With the 
assumption that each node has a finite buffer except for the first 
node, we show the non-increasing convex property of 
stationary waiting time with respect to the finite buffer 
capacities. We apply it to an optimization problem which 
determines the smallest buffer capacities subject to 
probabilistic constraints on stationary waiting times. 

Keywords⎯Buffer allocation, (max,+)-algebra, (max,+)-
linear system, tandem queue, timed event graphs, waiting times. 

I. Introduction 
As a common model of telecommunication networks, finite 

or infinite-buffer tandem queues have been widely studied. 
However, because of finiteness, most studies over the past 
decades focused on very restrictive systems. Recently, various 
types of networks belonging to a more generous type of system, 
the so called (max, +)-linear system, have been studied. They 
can be properly modeled by timed event graphs. A (max, +)-
linear system is a choice-free network of single-server queues 
with FIFO service discipline. 

This study aims to show the non-increasing convex property 
of waiting time characteristics derived in [1] and to apply it to an 
optimization problem determining the smallest buffer capacities 
satisfying probabilistic constraints on stationary waiting times. 
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To the best of our knowledge, there has been no result providing 
a mathematical proof for stochastic network models. Moreover, 
it is useful to manipulate various cost-time related functions. 
Refer to [2] for basic (max, +)-algebra and some preliminaries 
on waiting times in a (max, +)-linear system. 

II. Preliminaries and Main Result 

The basic reference algebra throughout this study is the so 
called (max, +)-algebra on the real line R , namely, the semi-
field with the two operations (⊕, ⊗), where ⊕ means 
maximization and ⊗ means addition for scalars and the    
(max, +)-algebra product for matrices (see [2]). The dynamics 
(stochastic behaviors) of (max, +)-linear systems can be captured 
by the following α-dimensional vectorial recurrence equation: 

 1 1 1n n n n nX A X B T+ + += ⊗ ⊕ ⊗           (1) 

with an initial condition X0, where {Tn} is a non-decreasing 
sequence of real-valued random numbers (the epochs of the 
Poisson arrival process with rate λ ); {An} and {Bn} are 
stationary and ergodic sequences of real-valued random 
matrices of size α×α and α×1, respectively; and {Xn} is a 
sequence of α-dimensional state vectors. The components of 
the state vector represent absolute times which grow to ∞ when 
n increases unboundedly; hence, we are more interested in the 
differences i i

n n nW X T= −  (like the waiting time of the n-th 
customer before joining server i ). Let 1n n nT Tτ += −  with 
T0=0, and let C(x) be the α×α matrix with all diagonal entries 
equal to -x and all non-diagonal entries equal to -∞. By 
subtracting Tn+1 from both sides of (1), the new state vector 
Wn+1 can be written as 

1 1( )n n n n nW A C W Bτ+ += ⊗ ⊗ ⊕  
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for 0n ≥  and with some initial condition W0. Under certain 
conditions, it is shown in [2] and in theorem 1 of [3] that for 
all 1,aλ −<  where a is the maximal Lyapunov exponent, the 
stationary waiting time W is determined by the matrix-series 

 0
1

( )k k
k

W D C T D−
≥

= ⊕ − ⊗⊕            (2) 

with D0=B0 and W0=B0, and for all 1,k ≥  

 
1

k

k n k
n

D A B− −
=

⎛ ⎞= ⊗⎜ ⎟
⎝ ⎠⊗ .              (3) 

Using this topology in [4] and [3], it was possible to obtain 
waiting time characteristics in a class of stochastic networks as 
a Taylor series expansion with respect to an arrival rate λ . 
Note that the random vector Dn plays an important role in 
computing waiting time characteristics, and can be calculated 
independently of the arrival rate. In addition, the components 
of Dn can be interpreted as a critical path in a task graph and 
written in terms of service times. 

From the definition of Dn in (3) with some algebra, we can 
derive the explicit expressions of Dn for a (max, +)-linear 
system. In [1], they derived the explicit expression of i

nD , the 
i-th component of Dn, for stationary waiting times in either 
constant (the following proposition 1) or non-overlapping 
finite-buffer tandem queues with communication blocking. 
Under a communication blocking policy, a customer at node 
j  cannot begin to use a service unless there is a vacant space 
in the buffer at node 1j + . For a node i, let iσ  be the 
constant service time, and let Ki be the finite buffer size 
including room for a customer to be served, and denote 

( )1Ki i
nD +  as a i

nD  with finite buffers ( )1
1, ,K i

i mK K+
+= . 

Proposition 1. In a constant m-node tandem queue with 
communication blocking with the assumptions that 2jK ≥ , 

2, ,j m= , and 1 1mK K += = ∞ , ( )1Ki i
nD +  is given as 

( ) { }11 1
1

max , ,K ii i j i
n j

D n nσ σ σ−+
=

= +∑  for 10 ,in K +≤ <   (4) 

( ) 11 1
1

max , , , ( 1), , ( ){ }K ii i j i
n i i ij

D n n iσ σ σ κ−+
=

= + +∑   

for 1

1 1
i i

j jj i j i
K n Kκ κ +

= + = +
≤ <∑ ∑ ,   (5) 

where ( )1

1 1
( ) 2 1p pi j p

i jj i j i
p n Kσ σ σ−

= + = +
⎡ ⎤= + + − +⎢ ⎥⎣ ⎦∑ ∑ , 

{ }1

1 1
min ( 1, , ) : q q

i j jj i j i
q i m K n Kκ +

= + = +
= ∈ + ≤ <∑ ∑  

with the convention that summation over an empty set is 0. 
From this result, theorem 1 follows, which shows the non-

increasing convex property of ( )1Ki i
nD + in finite buffer 1K i+ . 

Theorem 1. In either a constant or non-overlapping m-node 
tandem queue with communication blocking, ( )1Ki i

nD + is 
non-increasing convex in each finite buffer of ( )1, ,i mK K+  
and is more sensitive to the closer buffer capacity among the 
downstream nodes. That is, for all 0n ≥ , 
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where 
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Proof. Consider a deterministic tandem queue first. Assume 
that we focus on a node i , { }1, ,i m∈ , and that a buffer at 
node k , { }1, ,k i m∈ + , is increased by one and the other 
buffers remain the same, denoted by 1i

ke+ +K . Equations (4) 
and (5) can be written as follows. When k=i+1,  

( ) { }11 1
1

max , ,K ii i j i
n k j

D e n nσ σ σ−+
=

+ = +∑  for 0 in K≤ ≤ , 

( ) 11 1
1
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+ = + +∑  
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Similarly, when 2k i≥ + , 
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where i iω κ= if 1i kω < − and i iω ν=  if i kω ≥ , and 
( ) ( )i i⋅ = ⋅  if i kω ≤  and ( ) ( )i i⋅ = ⋅  if i kω > , in 

which iκ , iν , ( ),i ⋅  and ( )i ⋅  are the same as those 
previously defined. 

Now, we can see that ( ) ( )i i⋅ ≤ ⋅  for any n  with a given 
1i+K , and ( )i ⋅  in (7) is replaced by a ( )i ⋅  from the left to 

the right as k  is increased by one. Thus, (8) can have the non-
increasing property in k . Then, from the definition of i

nD  
(see (3)) and the linearity and convexity of the “max” function, 
we can infer the fact given in (6). Moreover, the same 
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arguments are also valid for a tandem queue with non-
overlapping service times (see proposition 2 in [1]), which 
completes the proof.                             

This non-increasing property of ( )1i i
nD +K and the fact that 

the composition of convex functions is also convex (see (2)) 
imply that iW , which is the elapsed time from the arrival until 
the beginning of service at node i , is also a non-increasing 
convex in ( )1, ,i mK K+ . 

III. Application and Examples 

For a node i, let 0iτ ≥  be a pre-specified bound on waiting 
time Wi and let 0 1iβ< <  be a pre-specified probability value, 
such as QoS. Because the system sojourn time Wm, that is, the 
waiting time at the last node m , is independent of finite buffer 
capacities in either constant or non-overlapping service times 
(see [5]), we consider only sub-areas of the system. For a 
simple instance, the optimal buffer capacities can be computed 
as the solution of the following optimization problem. For a 
given arrival rate 1[0, )aλ −∈ , where { }1max , , ma σ σ= , 

2
min

. . Pr( ) for 1, , 1
N

m
ii

i
i i

i

K

s t W i m
K

τ β
=

> ≤ = −
∈

∑
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Our main results, the non-increasing convex properties of 
( )1i i

nD +K  and Wi, guarantee the existence of optimal solutions 
of this problem. By using this fact together with an explicit 
expression of ( )1i i

nD +K given in [1] and a closed-form 
expression for the tail probability of stationary waiting time 
given in theorem 2.3 of [4], we can numerically determine 
optimal buffer capacities. Moreover, this optimization problem 
can be separately solved in reverse order of i one by one from 

1i m= −  to i=2 because ( )1i i
nD +K  is a function of 

( )1, ,i mK K+ . That is to say, one can first choose the optimal 
value of *

mK  and then choose the optimal value of *
1m mK K− +  

by using this value (determined just before) of *
mK , and so on. 

Our results are valid for both constant and non-
overlapping service times, but to avoid computational 
complexity we consider a 5-node tandem queue with 
deterministic service times. Let 0.1i iσ = ×  be a constant 
service time at node i. Table 1 shows tail probabilities of 
waiting times at node 3 when the traffic intensity 

0.9ρ = with varying K4 and K5, which infers the non-
increasing convex property of W3 mentioned in theorem 1 
(see the shaded cells). Table 2 shows the optimal buffer sizes 
satisfying probabilistic constraints on waiting times when 

1 2 30.5, 1.5, 3.0,τ τ τ= = =  and 4 4.5τ = . 

Table 1. Pr(W3>0.5) for various K4 and K5. 

K5

K4 
2 3 4 5 6 

2 0.754152 0.692997 0.653213 0.624306 0.602422

3 0.662715 0.600935 0.557714 0.525635 0.501105

4 0.598502 0.54857 0.510253 0.481023 0.458369

5 0.54857 0.508774 0.476992 0.452034 0.43242 

6 0.508774 0.47687 0.451126 0.430459 0.41401 

Table 2. Optimal buffer allocation. 

 *
2K  *

3K  *
4K  *

5K  

1 2 3 4 0.15β β β β= = = = 2 4 4 3 

1 2 3 4 0.13β β β β= = = = 3 3 4 4 

1 2 3 4 0.11β β β β= = = = 3 3 4 5 

1 2 3 4 0.09β β β β= = = = 3 3 4 6 

1 2 3 4 0.07β β β β= = = = 2 4 4 7 

 
 

IV. Concluding Remark 

In finite-buffer m-node tandem queues with communication 
blocking, we showed the mathematical proofs for the non-
increasing convex properties of ( )1i i

nD +K  and Wi with 
respect to finite buffers. These properties are immediately 
applicable to manipulate various time related functions. 
Moreover, these analytic methods can be extended to more 
complex (max, +)-linear systems such as fork-and-join 
networks with various blocking policies, tandem queues 
without the exception of finite buffer capacity at the first node, 
Kanban systems, and so on. 
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