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ABSTRACT

In this study, we consider stationary waiting times in a Poisson driven single-server m-node queues
in series. We assume that service times at nodes are independent, and are either deterministic or
non-overlapped. Each node excluding the first node has a finite waiting line and every node is oper-
ated under a FIFO service discipline and a communication blocking policy (blocking before service).
By applying (max, +)-algebra to a corresponding stochastic event graph, a special case of timed Petri
nets, we derive the explicit expressions for stationary waiting times at all areas, which are functions
of finite buffer capacities. These expressions allow us to compute the performance measures of inter-
est such as mean, higher moments, or tail probability of waiting time. Moreover, as applications of
these results, we introduce optimization problems which determine either the biggest arrival rate or
the smallest buffer capacities satisfying probabilistic constraints on waiting times. These results can

be also applied to bounds of waiting times in more general systems. Numerical examples are also
provided.
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1. Introduction

As a common model of telecommunication networks and manufacturing systems,
tandem queues with infinite or finite buffers have been widely studied. Because of
the computational complexity and difficulty in the analysis of performance evalua-
tions for stochastic networks, most studies are focused on very restrictive and/or
small size of stochastic networks over the past decades such as exponential service
times, infinite buffers, finite buffers of size 1 or 2, and so on. Especially, they usually
assumed infinite buffers at each node when they analyze the stationary waiting times
at a node in a finite-buffer stochastic system. In our best knowledge, there is no result
on stationary waiting times in sub-areas of finite-buffer tandem queues.

Recently, more generous system which so called a (max, +)-linear system has
been studied. Various types of stochastic networks which are prevalent in telecom-
munication, manufacturing systems belong to the (max, +)-linear system. Many in-
stances of (max, +)-linear systems can be represented by stochastic event graphs, a
special type of stochastic Petri net, which allow one to analyze them by (max, +)-
algebra, involving only two operators: 'max’ and '+'. To be short, (max, +)-linear sys-
tem is a choice-free net and consists of single-server queues under a FIFO (First-In
First-Out) service discipline.

Baccelli and Schmidt [5] derived a Taylor series expansion for mean stationary
waiting time with respect to the arrival rate in a Poisson driven (max, +)-linear system.
Their approach was generalized to other characteristics of stationary and transient
waiting times by Baccelli et al. [4], Ayhan and Seo [1, 2]. Recently, Seo {6, 7], by the
same way, derived explicit expressions for stationary waiting times in all areas of de-
terministic 2-node and 3-node tandem queues with finite buffers under two blocking
policies: communication and manufacturing. In Seo and Song [8], they considered an
optimization problem which determines the size of the finite buffers for 2-node tan-
dem queues with blocking.

Their methods are still valid for more complex (max, +)-linear systems. Thus, the
goal of this study is to extend their study to m-node tandem queues with blocking. In
either deterministic or non-overlapping m-node tandem queues with a communica-
tion blocking explicit expressions on stationary waiting times at all nodes are derived.
They are functions of finite buffer capacities, and immediately applicable to the

closed form expression for characteristics of stationary waiting times in Theorem 1 of
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[6] (see also [1]), and to optimization problems for determining the largest arrival rate
or the smallest buffer capacities which satisfies predetermined probabilistic con-
straints on stationary waiting times.

Reader can refer on basic (max, +)-algebra and some preliminaries on waiting
times in (max, +)-linear systems to Baccelli et al. [3] (see also [1, 2, 6]). This paper is
organized as follows. Section 2 includes our main results. Applications of our results
are introduced in Section 3 and 4. Section 5 shows some numerical examples and con-

cluding remarks are mentioned in Section 6.

2. Stationary Waiting Times in m-node Finite Queues in Series

In this section we introduce our main results on stationary waiting times in a
Poisson driven single-server m-node tandem queues with finite buffers. We assume
that service times at all nodes are distributed as either deterministic (constant) or non-
overlapped, and only a FIFO service discipline is allowed. We also assume that the
buffer at each node is finite except the one at the first node, and services at each node
are given by a communication blocking policy.

We first analyze an m-node queue in series with constant service times and de-

rive the explicit expressions for D!, the i-th component of random vector D, (see

[1, 2, 6]), on stationary waiting times at all areas of the stochastic system. Note that
the D, can be interpreted as a critical path (the longest path of n-th arrival from
the initial node to node i) in the corresponding task graph and written in terms of
service times with only two operators ‘max” and ‘+'. It also means that the polynomi-
als p,() and g,() givenin [1] (see also [1, 2, 6]) can be calculated independently of
the arrival rate of a Poisson process. Then, from those explicit expressions we can in-

tuitively inference the explicit expressions on stationary waiting times for a system
with non-overlapping service times.

Fornode i, i=1,2,---,m, let o' be a deterministic service time, and let K, be
a buffer capacity at node , which includes a room for a customer in service. First of all,

it is worth mentioning about the stationary waiting times in m-node queues in series

with infinite buffers at all nodes. From the definition of random vector D, with

some algebra, the expressions for the i-th components of D, can be obtained as the
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following expressions.

I‘_l . .
D :Zo”'+max{n0'1,n0'2,...,no"} for n>0. (1)
j=1

For a finite buffer tandem queue we only consider a communication blocking
policy (blocking before service) in this study. Under a communication blocking rule, a

customer at node j cannot begin his service unless there is a vacant space in the
buffer at node j+1.One can obtain recursive equations for stationary waiting times

in (max, +)-linear systems with finite buffers by using the same way as done in [1, 2],
which draws a corresponding event graph and then converts it to an event graph
with infinite buffers by inserting dummy nodes with zero service times. For example,
the following Figure 1 shows the event graph of a 3-node tandem queue with finite
buffers of size 3 at node 2 and 3 while Figure 2 shows the event graph of the one with

infinite buffers at all nodes by inserting dummy nodes having zero service times.

Figure 2. 3—node tandem queues with infinite buffers and dummy nodes

Remark 1: In the previous studies [6-8], they mentioned that the explicit expressions

of D, under communication blocking policy can be written in terms of a common
formula when K; >3 for all i, but they recently figured out that these expressions

are also valid when K. >2 forall 1.
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In this study, we only consider the cases for K; 22, i=2,.--,m . Because this
case covers more general systems and for other case omitted here one can easily ob-
tain explicit expressions using the same way, we here derive the explicit expressions
of D,,the i-th components of the random vector D! .By the similar way as done in
infinite-buffer systems, one is able to obtain the following Proposition for the explicit

expressions of D! as functions of the sizes of finite buffers K o J=itlm.

Proposition 1: For a deterministic m-node tandem queue under Communication

Blocking when K;>2, j=2,---,m,and K;=K,,, =x,foranode i, i=1,---,m,

. i~1 . .
D, =) o’ + max{no',no?,---,no'} for 0<n<K,, (2)
j=1
. i-1 ’ - K; K1‘+1
D;:Zo”+max{n0’1,~--,nc7’,lf(z'+1),---,lf.(Ki)} for ZK;' <n< ZK;‘ 3)

i=1 j=i+l j=i+1

j=t+1 f=i+1

p-1 4
where [(p) in (3) is defined as lf(p):of+22 o-f+{n—[z K}-]—l-lj!dp, K;1s an

q
integer value such that =min{qe(i+1,---,m): Z K <n< Z K}}, and with the
j=i+1

j=i+l

convention that summation over an empty set is 0.

The following Remark confirms that Proposition 1 shows the same results as the

previous study of Seo [7] for a Poisson driven finite 3-node tandem queue.

Remark 2: By letting m =3 in Proposition 1, one can obtain the same expression

for the random vector D}, as those in [7], in which he derive the explicit expression
of D) in a 3-node finite tandem queue with deterministic service times. That is, un-

der communication blocking policy, when K, >2 and K3 >2,

for i=1,
D =no! for 0<n<K,,

D%ZmaX{anl,O’l-}-(n—Kz +1)0?} for K, <n< Ky, +Kjs,
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D} =max{no!,c! +(n-K, +1)o?, 6! + 202 +[n— (K, + K3 ) +1]6°)}
for n2K2 +K3,

ii) for i=2

D2 =0'1+max{n0'1,n0'2} for 0<n<Kj,

D,%=0'1+max{n0'1,n0'2,0'2+(n—-K3 +1)o°} for n>Ks,
iii) for i =3

D; =o' +0” +max{no', no*,ne®} for n20.

On the other hand, because every service time at a node can be different in a sys-

tem with non-overlapping service times, let o, be an i.i.d. random variable of the

n-th service time at node i in the sense of Palm probability on the negative half line.
From the basic probability theory, we can infer the expressions for a non-overlapping
system by substituting a (simple) sum of degenerate random variables in Proposition

1 with a sum of random variables. That is, Proposition 1 can be written as follows.

Proposition 2: For a non-overlapping m-node tandem queue under Communication

Blocking, when K;>2, j=2,--,m,and K, =K,, =, foranode ¢, i=1-,m,

B I‘__I . -
D;:zofﬁmax{Zoff, o, ) o, for 0<n<K,, (4)

j=1 ¢=1 r=1 =1

=
=
=

43 K; +1

. i_l . . ~ ~ Kr
D, =) oly+max{() o, > o' L (i+1), L (x)} for D K <n<D K, (5
j=1

£=1 t=1 j=i+l j=i+1

=

X . ) | p-1 > | n[.f) Kj}+1j|
where [(p) in (3) is defined as L(p)=0', + Z zo{ (n41-0) +Z€ Jar o'f(n+1—f) K,

=1 1
j=1+1 £=1
is the same as the one in Proposition 1, and with the convention that summation over

an empty set is 0.

From the above Propositions, one is able to disclose the fact that deterministic m-
node tandem queues with both infinite and finite buffers under communication

blocking mechanism have same expressions of D;’ for all n>0. And, this is also

true for those with non-overlapping service times (see equations (1), (2), and (4)).
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These show the same results, by the totally different way, as those in Wan and Wollff
[10] that when the first node’s buffer capacity is infinite, a customer's sojourn time is not
dependent of the finite buffer capacities and the order of nodes (see also Whitt [11]).
Corollary 3.1 in Ayhan and Seo [1], Theorem 1 in Baccelli et al. [4] and Theorem
2.3 in Ayhan and Seo [2] together with the explicit expressions allow one to compute
characteristics of stationary waiting times in such stochastic systems with either de-

terministic or non-overlapping service times.

3. Application to Optimization Problems

Our results can be applicable to an optimization problem which determines the
largest Poisson arrival rate or the smallest finite buffers capacities subject to probabil-
istic constraints on stationary waiting times in m-node tandem queues with finite

buffers and either constant or non-overlapping service times.

For a node i, i=1,---,m, let 7; 20 be a pre-specified bound on stationary

waiting time W', the elapsed time from the arrival until the beginning of its service
atnode i,andlet 0< B <1 be a pre-specified probability value, like a QoS (Quality
of Service).

With the fact that the tail probability of st'ationary waiting time in an M/G/1
queue is convex with respect to an arrival rate 1 (see [2]), and the explicit expres-

sions of D} derived in the previous section together with Theorem 2.3 in [2], the

optimal arrival rate can be numerically computed as a solution of the following opti-

mization problem. For a fixed i, i=1,---,m—-1, and given finite buffer sizes K;s,

jzzf'"/m;
max A
st. Pr(W' >1,)<p.
/16[0,{1;1)

where g; is given in the i-th component of D, vector defined in (2.5) of [1] (see
also [2, 6]).

From the fact that the stationary waiting time at node m is independent of the
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sizes of finite buffers, an optimization problem determining the smallest finite buffer
capacities can consider only sub-areas of a system. From the definition of W' and

D! (see equations (2.2) and (2.3) in [1]), because for a fixed 7, each argument of D,

is monotonously decreasing in K]- , j=1+1,---,m, and 'max’ function is a convex so

that D; is a decreasing convex for all n2>0. Consequently, W’, the elapsed time
from the arrival until the beginning of its service at node i, is a decreasing convex in
K;, jzi+1, because the composition of convex functions is also a convex function

(see [9]). So, because W' is stochastically non-increasing in K i j=1+L---,m, the

optimal values of finite buffers can be numerically chosen. The optimal values of fi-

nite buffers can be computed as a solution of the following optimization problem.

min ZK}.
j=2

st. Pr(W' >z)<pB fori=1,--,m-1
K, >2,j=2,,m

where g, is givenin the i-th componentof D, vector defined in (2.5) of [1].
As mentioned earlier, since the expressions of Dj; are functions of Kj , J=i+1,

+--,m, this optimization problem can be solved in reverse order of node i, one by
one from i=m-1 to i=1. In other words, one can first choose the optimal value

of K, (when i=m-1), then choose the optimal value of K,_;+K,, (when

i = m—2) by using this chosen value K, and so on.

4. Application to tandem queues with more General Service Times

In this section, we introduce a stochastic ordering result which is useful to obtain
bounds for stationary waiting times in m-node tandem queues with more general
service times. Shaked and Shanthikumar [9] showed the following well-known sto-
chastic ordering result. For a random variable X with finite support, and letting Iy
be the left endpoint and uy be the right endpoint, then the following stochastic or-
dering holds.
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E(X) <y X< Z

where E(X) is the expected value of X, <. means stochastic convex ordering. A

random variable Z is defined as

E(X)_lx

U B prz—u) =

X tx ”x'lx

Pr(Z=1,)=

From the definition of D) one can easily see the convexities of waiting time W’
and tail probability Pr(W' >z,) since they are functions of service times involving
only two operators '+ and ‘max’. Together with our results, therefore, the stochastic
convex ordering result allows one to compute lower and upper bounds for character-

istic of stationary waiting times in finite-buffer m-node tandem queues with more

general service times of finite supports. This finite support assumption is not unrea-
sonable in real systems.

In order to illustrate our results, numerical examples are provided in next section.

5. Numerical Examples

Even though our method is valid for both deterministic and non-overlapping service

times, to avoid computational complexity and difficulty we consider here only a de-

terministic tandem queues under communication blocking.

For instance, we consider a 5-node tandem queue with constant service times.
No blocking occur at all downstream nodes of a node with the biggest service time.
Without loss of generality, we assume an increasing order of service times. Let
o' =0.1xi be a constant service time at node i, i =1,---,5. In this example, the
maximum of service times (Lyapunov maximum value, see [3]) a is 0.5, and when

K;=5 for j=2,---,5 the values of &, i=1,---,5, defined in the structure D,f, of
(2.5) of [1] (see also [2]) are given as follows: & =31, & =27, & =23, & =16,
and &5 =0. Note that & is the number of terms needed in Corollary 3.1 of [1] to

compute characteristics of stationary waiting times. From the explicit expressions for
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D, together with Corollary 3.1 one is able to compute the exact values of mean sta-
tionary waiting times E(W') atnode i.Following Table 1-Table 3 show exact val-

ues and simulation values for the mean stationary waiting times at each node when

the traffic intensity is p =0.5.

Table 1. Mean Stationary Waiting Times with K, =, K;=5, j=2,-,5

Waiting Time Exact Solution Simulation
E(W') 0.00555587 0.00556 F 0.00003098
E(W?) 0.125003 0.12504 F 0.00011165
E(W?) 0.364311 0.36439 F 0.00028483
E(W*) 0.733498 0.73376 F 0.00067334
E(W®) 1.25 1.2503 F 0.0013900

As mentioned earlier, since the expressions for D, are functionof K;, j=i+1,--,m,
&; 1s also varying with finite buffer capacities K. Table2has ¢ =29, £, =23, £, =17,
& =11,and & =0, and Table3has & =39, & =34, &=28, & =21,and & =0.

Table 2. Mean Stationary Waiting Times with K, =w, K,=7,K,=6,K, =5, and K, =4.

Waiting Time Exact Solution Simulation
E(W') 0.00555556 0.00554 F 0.000048929
E(W?) 0.125 0.12497 F 0.00017797
E(W?) 0.364337 0.36429 F 0.00041966
E(W*) 0.734402 0.73435 F 0.00085446
E(W°) 1.25 1.2499 F 0.00162

Table 3. Mean Stationary Waiting Times with K, =, K.=6, j=2,---,5.

Waiting Time Exact Solution Simulation
E(W') 0.00555557 0.00556 F 0.000030980
E(W?) 0.125 0.12504 F 0.00011189
E(W?) 0.364288 0.36439 F 0.00028489
E(W*) 0.73336 0.73362 F 0.00066158
E(W?°) 1.25 1.2503 F 0.00139
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From the Tables, we can see that our expressions of D' are accurate and verify

the fact mentioned earlier that stationary waiting times at the last node are independ-

ent of finite buffer sizes K;, j=2,.--,m (see equations (1), (2), and (4)). Moreover,

comparing Table 1 with Table 3 shows the decreasing property of the mean waiting

times with respect to finite buffer capacities as we expect.

By using the explicit expressions of D! together with the previous results we

can numerically determine the largest value of a Poisson arrival rate, the smallest

values of K., j=2,---,m, as well as the bounds for characteristics of waiting times,

but we omit them here.

6. Concluding Remark

By using (max, +)-algebra, we derived the explicit expressions on stationary waiting
times in Poisson driven finite-buffer tandem queues with either deterministic or non-
overlapping service times as functions of finite buffer. While we only consider a
communication blocking policy, the same method can be applied to a production
blocking policy. We show that these expressions are applicable to optimization prob-
lems subject to probabilistic constraints on waiting times such as QoS, and that they
are useful to obtain bounds for waiting times in a finite-buffer system with more gen-
eral service times.

In the future, these results can be extended to more general complex (max, +)-
linear systems with finite buffers such as fork-and-join type queues (a special case of
tandem queues), (maybe) mixture of several blocking policies, and so forth. It is also
interesting to apply these methods to analysis of stochastic networks with multiple
servers and of base-stock inventory models. It is necessary, however, to develop more

efficient computational algorithms in order to overcome the computational complex-
ity and difficulty.

References

[1] Ayhan, H. and D-W. Seo, “Laplace Transform and Moments of Waiting Times



34

2]

3]
4]
5]
[6]
[7]

[8]

9]

[10]

[11]

SEO, LEE, AND KO

in Poisson Driven (Max, +)-Linear Systems,” Queueing Systems 37, 4 (2001), 405-
438.

Ayhan, H. and D-W. Seo, “Tail Probability of Transient and Stationary Waiting
Times in (Max, +)-Linear Systems,” IEEE Transactions on Automatic Control 47, 1
(2002), 151-157.

Baccelli, F., G. Cohen, G.]. Olsder, and J-P. Quadrat, Synchronization and Line-
arity: An Algebra for Discrete Event Systems, John Wiley and Sons 1992.
Baccelli, F., S. Hasenfuss, and V. Schmidt, “Expansions for Steady State Charac-
teristics in (Max, +) Linear Systems,” Stochastic Models 14 (1998}, 1-24.

Baccelli, F. and V. Schmidt, “Taylor Series Expansions for Poisson Driven (Max,
+) Linear Systems,” Annals of Applied Probability 6, 1 (1996), 138-185.

Seo, D.-W., “Application of (Max, +)-algebra to the Waiting Times in Determi-
nistic 2-node Tandem Queues with Blocking,” J]. KORMS 30, 1 (2005), 149-159.
Seo, D.-W., “Application of (Max, +)-algebra to the Waiting Times in Determi-
nistic 3-node Tandem Queues with Blocking,” ]. KORMS 30, 2 (2005), 73-80.
Seo, D.-W. and B.-K. Song, “Application of (Max, +)-algebra to Optimal Buffer
Size in Deterministic Queues in Series with Blocking,” LNAI 3642 (2005), 671-
677.

Shaked M. and J. G. Shanthikumar, Stochastic Orders and Their Applications,
Academic Press, 1994.

Wan, Y.-W. and R. W. Wolff, “Bounds for Different Arrangements of Tandem
Queues with Nonoverlapping Service Times,” Management Science 39, 9 (1993),
1173-1178.

Whitt, W., “The Best Order for Queues in Series,” Management Science 31, 4
(1985), 475-487.



