• Title/Summary/Keyword: (A-) semiring

Search Result 58, Processing Time 0.027 seconds

Spanning column rank 1 spaces of nonnegative matrices

  • Song, Seok-Zun;Cheong, Gi-Sang;Lee, Gwang-Yeon
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.849-856
    • /
    • 1995
  • There are some papers on structure theorems for the spaces of matrices over certain semirings. Beasley, Gregory and Pullman [1] obtained characterizations of semiring rank 1 matrices over certain semirings of the nonnegative reals. Beasley and Pullman [2] also obtained the structure theorems of Boolean rank 1 spaces. Since the semiring rank of a matrix differs from the column rank of it in general, we consider a structure theorem for semiring rank in [1] in view of column rank.

  • PDF

NONBIJECTIVE IDEMPOTENTS PRESERVERS OVER SEMIRINGS

  • Orel, Marko
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.805-818
    • /
    • 2010
  • We classify linear maps which preserve idempotents on $n{\times}n$ matrices over some classes of semirings. Our results include many known semirings like the semiring of all nonnegative integers, the semiring of all nonnegative reals, any unital commutative ring, which is zero divisor free and of characteristic not two (not necessarily a principal ideal domain), and the ring of integers modulo m, where m is a product of distinct odd primes.

A Note on Central Separable Cancellative Semialgebras

  • Deore, R.P.;Patil, K.B.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.595-602
    • /
    • 2005
  • Here we define Central separable semialgebras and to prove some structure theorems for central separable cancellative, semialgebras over a commutative and cancellative semiring.

  • PDF

TOTAL IDENTITY-SUMMAND GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO A CO-IDEAL

  • Atani, Shahabaddin Ebrahimi;Hesari, Saboura Dolati Pish;Khoramdel, Mehdi
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.159-176
    • /
    • 2015
  • Let R be a semiring, I a strong co-ideal of R and S(I) the set of all elements of R which are not prime to I. In this paper we investigate some interesting properties of S(I) and introduce the total identity-summand graph of a semiring R with respect to a co-ideal I. It is the graph with all elements of R as vertices and for distinct x, $y{\in}R$, the vertices x and y are adjacent if and only if $xy{\in}S(I)$.

On spanning column rank of matrices over semirings

  • Song, Seok-Zun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.337-342
    • /
    • 1995
  • A semiring is a binary system $(S, +, \times)$ such that (S, +) is an Abelian monoid (identity 0), (S,x) is a monoid (identity 1), $\times$ distributes over +, 0 $\times s s \times 0 = 0$ for all s in S, and $1 \neq 0$. Usually S denotes the system and $\times$ is denoted by juxtaposition. If $(S,\times)$ is Abelian, then S is commutative. Thus all rings are semirings. Some examples of semirings which occur in combinatorics are Boolean algebra of subsets of a finite set (with addition being union and multiplication being intersection) and the nonnegative integers (with usual arithmetic). The concepts of matrix theory are defined over a semiring as over a field. Recently a number of authors have studied various problems of semiring matrix theory. In particular, Minc [4] has written an encyclopedic work on nonnegative matrices.

  • PDF

Rank-preserver of Matrices over Chain Semiring

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • For a rank-1 matrix A, there is a factorization as $A=ab^t$, the product of two vectors a and b. We characterize the linear operators that preserve rank and some equivalent condition of rank-1 matrices over a chain semiring. We also obtain a linear operator T preserves the rank of rank-1 matrices if and only if it is a form (P, Q, B)-operator with appropriate permutation matrices P and Q, and a matrix B with all nonzero entries.

  • PDF

TOTAL GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO IDENTITY-SUMMAND ELEMENTS

  • Atani, Shahabaddin Ebrahimi;Hesari, Saboura Dolati Pish;Khoramdel, Mehdi
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.593-607
    • /
    • 2014
  • Let R be an I-semiring and S(R) be the set of all identity-summand elements of R. In this paper we introduce the total graph of R with respect to identity-summand elements, denoted by T(${\Gamma}(R)$), and investigate basic properties of S(R) which help us to gain interesting results about T(${\Gamma}(R)$) and its subgraphs.

COMPLETELY V-REGULAR ALGEBRA ON SEMIRING AND ITS APPLICATION IN EDGE DETECTION

  • G.E. CHATZARAKIS;S. DICKSON;S. PADMASEKARAN;J. RAVI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.633-645
    • /
    • 2023
  • In this paper, Completely V-Regular on semiring is defined and used to derive new theorems with some of its properties. This paper also illustrates V-Regular algebra and Completely V-Regular Algebra with examples and properties. By extending completely V-Regular to fuzzy, a new concept, fuzzy V-Regular is brought out and fuzzy completely V-Regular algebra is introduced too. It is also developed by defining the ideals of Completely V -Regular Algebra and fuzzy completely V-Regular algebra. Finally, this fuzzy algebra concept is applied in image processing to detect edges. This V-Regular Algebra is novel in the research area.