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NONBIJECTIVE IDEMPOTENTS
PRESERVERS OVER SEMIRINGS

Marko Orel

Abstract. We classify linear maps which preserve idempotents on n×n
matrices over some classes of semirings. Our results include many known
semirings like the semiring of all nonnegative integers, the semiring of all
nonnegative reals, any unital commutative ring, which is zero divisor free
and of characteristic not two (not necessarily a principal ideal domain),
and the ring of integers modulo m, where m is a product of distinct odd
primes.

1. Introduction

Linear preserving problems is an active research area in matrix and opera-
tor theory. It concerns with classification of linear maps which preserve some
functions, subsets, relations, etc. One of these invariants, preservers of which
were already studied by many mathematicians, is the set of all idempotents.
We refer to [1, 3, 5, 12] for linear maps which preserve idempotents on n × n
matrices over fields and rings. Linear maps which strongly preserve idempo-
tents (i.e., A is idempotent if and only if Φ(A) is idempotent) on matrices
over antinegative semirings, which are zero divisor free, were studied in [2]. In
particular, a complete classification was obtained for the semiring of all non-
negative integers, the semiring of all nonnegative reals, chain semiring, and for
binary Boolean algebra. The last result was later generalized to arbitrary finite
Boolean algebra [11, Theorem 3.2], which is a semiring isomorphic to a direct
product of binary Boolean algebras. Very recently, similar problems as in [2]
and [11, Theorem 3.2] were studied in [13, 7]. Here, linear maps Φ were not
assumed to preserve idempotents strongly (i.e., A2 = A implies Φ(A)2 = Φ(A)
but not vice versa). However, it was assumed that the maps Φ were bijective.
On the contrary, in the case of matrices over fields [1, 5], neither bijectivity
nor strong preserving of idempotents was assumed (see also [12]). In fact, for
fields of characteristic different from 2, the semigroup of nonzero linear maps

Received October 1, 2008.
2000 Mathematics Subject Classification. 15A04, 15A33, 16Y60.
Key words and phrases. linear preserver, semiring, idempotent matrix.
This work was supported by grants from the Ministry of Higher Education, Science and

Technology, Slovenia.

c©2010 The Korean Mathematical Society

805



806 MARKO OREL

that preserve idempotents is generated by transposition and similarity. Hence,
any such map is automatically bijective and strongly preserves idempotents.
Is it possible to obtain a result, similar to [1, 5], also for matrices over semir-
ings? Our main results answer to this question positively for two considerably
large classes of semirings. The first class consist of commutative multiplica-
tively cancellative semirings, which are not antinegative, and such that 2 6= 0.
The second class is formed by additively cancellative antinegative semirings,
which are zero divisor free. As a corollary a complete classification of linear
idempotents preservers is obtained for commutative semirings, which are addi-
tively and multiplicatively cancellative, and such that 2 6= 0. For more details
see Theorem 2.1, Theorem 2.3, Corollary 2.5, and Corollary 2.6.

The rest is organized as follows. In Section 2 we recall the necessary def-
initions and state the main results of this paper. In Section 3 the proofs are
given while in Section 4 the analogous problem for a direct product of semir-
ings is considered. Some interesting examples of semirings which fit the main
theorems are given in Section 5. In this section we also list counterexamples
which show that various assumptions in the main theorems cannot be omitted.

2. Preliminaries and statements of main results

A semiring S consists of a set and two binary operations, addition (+) and
multiplication (·), such that:

(a) (S, +) is a commutative monoid with identity element 0;
(b) (S, ·) is a monoid with identity element 1 6= 0;
(c) multiplication is distributive over addition on both sides;
(d) s0 = 0 = 0s for all s ∈ S.
The multiplication symbol is usually omitted, i.e., st := s · t. A semiring S

is called:
– commutative (COM) if the monoid (S, ·) is commutative;
– antinegative (AN) if s + t = 0 implies s = 0 = t for any s, t ∈ S;
– additively cancellative (AC) if s + t = s + u implies t = u for any

s, t, u ∈ S;
– multiplicatively cancellative from left (MCL) if st = su, s 6= 0 imply

t = u for any s, t, u ∈ S;
– multiplicatively cancellative from right (MCR) if ts = us, s 6= 0 imply

t = u for any s, t, u ∈ S;
– multiplicatively cancellative (MC) if it is MCL and MCR;
– zero divisor free (ZDF) if st = 0 implies s = 0 or t = 0 for any s, t ∈ S.

It is easy to see that each of the properties MC, MCL, or MCR implies ZDF,
but not conversely (see e.g. Counterexample 5.7).

A map ϕ : S→ S′ between two semirings is called a semiring homomorphism
if ϕ(s + t) = ϕ(s) + ϕ(t) and ϕ(st) = ϕ(s)ϕ(t) holds for all s, t ∈ S, and if in
addition ϕ(0) = 0 and ϕ(1) = 1. When it is bijective, it is called a semiring
isomorphism. The center of a semiring S, i.e., the set {s ∈ S | st = ts ∀t ∈ S},
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is denoted by Z(S). Let Mn(S) denote the set of all n×n matrices with entries
from S. A matrix with 1 at position (i, j) and zeros elsewhere is denoted
by Eij , while I denotes the identity matrix. A matrix A ∈ Mn(S) is called
idempotent if A2 = A. A map Φ : Mn(S) → Mn(S) preserves idempotents if
Φ(A) is idempotent whenever A is idempotent. A map Φ is left linear, or shortly
linear, if Φ(sA + tB) = sΦ(A) + tΦ(B) for all s, t ∈ S and A, B ∈ Mn(S). We
say that A and B are orthogonal if AB = 0 = BA. The Schur, i.e., entrywise
product of matrices A and B is denoted by A ◦B.

We now state the main results of this paper.

Theorem 2.1. Let a semiring S be COM, MC, and not AN. If n ≥ 2 and
1 + 1 6= 0, then a linear map Φ : Mn(S) → Mn(S) preserves idempotents if and
only if it satisfies one of the following forms:

sΦ(A) = QAR,(i)

sΦ(A) = QAtrR,(ii)

Φ ≡ 0.(iii)

Here, s ∈ S is nonzero and matrices Q,R ∈ Mn(S) satisfy QR = RQ = sI.

Remark 2.2. We cannot always assume that s = 1 (see Counterexample 5.6).

Theorem 2.3. Let a semiring S be AC, ZDF, and AN. If n ≥ 2 and a linear
map Φ : Mn(S) → Mn(S) preserves idempotents, then it fits one of the following
forms:

Φ(A) = P (A ◦X)P−1,(i’)

Φ(A) = P (Atr ◦X)P−1,(ii’)

Φ(A) =
n∑

i=1

aiiPi,(iii’)

Φ(A) = P

(
a11y11 a12y12 + a21z21

a21y21 + a12z12 a22y22

)
P−1 (n = 2).(iv’)

Here, P is a permutation matrix, X ∈ Mn(S) has nonzero entries, P1, . . . , Pn

are pairwise orthogonal (possibly zero) idempotents, and aij denotes the (i, j)-
entry of the matrix A. In (iv’), y2

ii = yii 6= 0, and yij = 0 or zij = 0 for all
i 6= j.

Remark 2.4. We will see in the proof that entries of the matrix X satisfy
x2

ii = xii and xijtxjk = txik for all i, j, k distinct and for all t ∈ S.
We also remark that the inverse of Theorem 2.3 is not true in general, i.e.,

not every map (i’)-(iv’) preserves idempotents. If we strengthen ZDF to MCL
or MCR, then we get a stronger result.

Corollary 2.5. Let S be AC, MCL or MCR, and AN. If n ≥ 3 and a linear
map Φ : Mn(S) → Mn(S) preserves idempotents, then it fits one of the following
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forms:

Φ(A) = QAQ−1,(i”)

Φ(A) = QAtrQ−1 (S is COM ),(ii”)

Φ(A) =
n∑

i=1

aiiPi.(iii”)

Here, Q ∈ Mn(S) is invertible and such that all entries of Q and Q−1 are in
Z(S).

We can even drop the AN assumption if we add COM. Note that in this
case MCL=MC=MCR.

Corollary 2.6. Let a semiring S be COM, MC, and AC. If n ≥ 3 and 1+1 6= 0,
then a linear map Φ : Mn(S) → Mn(S) preserves idempotents if and only if it
satisfies one of the forms (i), (ii), (iii), or it is nonzero and of the form (iii”),
but only if every idempotent matrix in Mn(S) has all diagonal entries equal 0
or 1.

3. Proofs

It is well known that any commutative ring S, which is zero divisor free,
can be embedded into the field of fractions, denoted here by F(S) (see e.g. [6,
Section 6.2]). Recall that F(S) consists of all equivalence classes [a, b] via the
equivalence relation

(a, b) ∼ (c, d) ⇔ ad = bc

defined on S× S\{0}. Addition and multiplication are given by [a, b] + [c, d] :=
[ad + bc, bd] and [a, b] · [c, d] := [ac, bd].

Now, if a semiring S is COM and MC, then F(S) has all properties of a field
with exception that (F(S), +) is only a monoid and not necessarily a group
(cf. [9, p. 106, Theorem 2.5]). Moreover, the map ϕ : S→ F(S), defined by

(1) ϕ(s) := [s, 1],

is an injective semiring homomorphism.

Lemma 3.1. If a semiring S is COM, MC, and not AN, then F(S) is a field.

Proof. Since S is not AN, there exist nonzero x, y ∈ S such that x + y = 0.
Therefore, given [a, b] ∈ F(S) we can define its additive inverse by [ya, xb].
Namely, [a, b] + [ya, xb] = [xa, xb] + [ya, xb] = [(x + y)a, xb] = 0. Hence,
(F(S),+) is a group. ¤

If F is a field, and nonzero idempotent matrices P1, . . . , Pn ∈ Mn(F) are
pairwise orthogonal, then there exists an invertible matrix Q ∈ Mn(F) such
that Pi = QEiiQ

−1 for all i (see [4, Lemma 2.2] or [10, p. 62, Exercise 1] for a
generalization of this). Similar conclusion holds for semirings, which are COM,
MC, and are not AN.
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Lemma 3.2. Let the semiring S be COM, MC, and not AN. If nonzero idem-
potents P1, . . . , Pn ∈ Mn(S) are pairwise orthogonal, then there exist a nonzero
s ∈ S and matrices Q,R ∈ Mn(S) with QR = RQ = sI such that sPi = QEiiR
for all i.

Proof. For a given matrix A ∈ Mn(S) let Aϕ be a matrix obtained from A by
applying ϕ from (1) entrywise. Clearly, Pϕ

1 , . . . , Pϕ
n ∈ Mn(F(S)) are nonzero

pairwise orthogonal idempotents. Since F(S) is a field by Lemma 3.1, there
exists an invertible matrix V ∈ Mn(F(S)) such that Pϕ

i = V EiiV
−1 for all i.

Hence, (
∑n

i=1 Pi)ϕ =
∑n

i=1 Pϕ
i = I = Iϕ, and consequently

(2)
n∑

i=1

Pi = I.

Let W := V −1 and denote fractions at the (i, j)–entry of the matrices V and W
with [vij , v

′
ij ] and [wij , w

′
ij ] respectively. Further, let α := [

∏n
i,j=1 v′ij , 1], β :=

[
∏n

i,j=1 w′ij , 1], and γ := αβ. Clearly, γ 6= 0 and

γPϕ
i = (αV )Eii(βW ) (i = 1, . . . , n).

Now, αV = Qϕ and βW = Rϕ for some Q,R ∈ Mn(S). Similarly, γ = ϕ(s) for
nonzero s := (

∏n
i,j=1 v′ij) · (

∏n
i,j=1 w′ij) ∈ S. Therefore,

(3) sPi = QEiiR (i = 1, . . . , n).

By (2) and (3) we deduce that sI =
∑n

i=1 sPi = QR.
To show that RQ = sI, let tij denote the (i, j)-th entry of the matrix RQ.

Then,

(4) s2Pi = (sPi)2 = Q(EiiRQEii)R = tiiQEiiR = tiisPi.

By assumption, Pi 6= 0 and S is MC. Hence, (4) implies that tii = s. If i 6= j,
then

(5) 0 = (sPi)(sPj) = Q(EiiRQEjj)R = tijQEijR = tij(Qei)(Rtrej)tr,

where ei and ej are column–vectors with 1 at the i-th, respectively j-th, com-
ponent and zeros elsewhere. If tij 6= 0, then (5) implies that Qei = 0 or
Rtrej = 0, because S is MC. Consequently, sPi = (Qei)(Rtrei)tr = 0 or
sPj = (Qej)(Rtrej)tr = 0, a contradiction. Hence, tij = 0 and RQ = sI. ¤

For semirings which are ZDF and AN the following analogue holds.

Lemma 3.3. Let a semiring S be ZDF and AN. If nonzero idempotents P1, . . .,
Pn ∈ Mn(S) are pairwise orthogonal, then there exist a permutation matrix P
and nonzero s1, . . . , sn ∈ S such that s2

i = si and Pi = P (siEii)P−1 for all i.

Proof. It suffices to show that, as sets, {P1, . . . , Pn} = {s1E11, . . . , snEnn} for
some si = s2

i 6= 0. Let p
(i)
jk denote the (j, k)-th entry of the matrix Pi. Since

PiPj = 0 for all i 6= j, we deduce that
∑n

k=1 p
(i)
gkp

(j)
kh = 0 for all g and h. Since
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S is AN, this means that p
(i)
gkp

(j)
kh = 0 for all k. Because S is ZDF, we see that

if p
(i)
gk 6= 0, then

(6)
all entries of the matrix Pj in the k-th row and g-th column vanish (j 6= i).

We will now use induction on n. Let n = 2. If p
(1)
12 6= 0 (or p

(1)
21 6= 0),

then (6) implies that P2 = p
(2)
21 E21 (or P2 = p

(2)
12 E12). This is a contradiction

since P2 is a nonzero idempotent. Hence, P1 is a diagonal 2 × 2 matrix. By
symmetry the same holds for P2. Since S is ZDF and P1, P2 are nonzero, we
easily deduce that {P1, P2} = {s1E11, s2E22} for some nonzero s1, s2 ∈ S with
s2
1 = s1, s

2
2 = s2. Assume now the conclusion holds for n = m− 1. Let n = m.

If there exist g1, . . . , gm and h1, . . . , hm such that {g1, . . . , gm} = {1, . . . , m}
= {h1, . . . , hm} and p

(i)
gihi

6= 0 for all i, then (6) implies that Pi = p
(i)
gihi

Egihi
.

Since Pi is a nonzero idempotent, we deduce that gi = hi and si := p
(i)
gihi

=

(p(i)
gihi

)2. Hence, {P1, . . . , Pm} = {s1E11, . . . , smEmm}.
Assume erroneously that such g1, . . . , gm and h1, . . . , hm do not exist. Then

all matrices P1, . . . , Pm have some fixed row or column zero. Say that r-
th row is such (the proof is symmetrical if r-th column is zero). Then, all
matrices Pi must have some nonzero entry outside of r-th column and row.
Otherwise we would deduce Pi = P 2

i = 0 by a straightforward calculation.
Hence, the (m − 1) × (m − 1) matrices P̃i, which are obtained from matrices
Pi by deleting r-th column and row, are nonzero. Since matrices Pi have r-th
row zero it follows that P̃ 2

i = P̃i for all i = 1, . . . ,m and P̃iP̃j = 0 for all
i 6= j. By induction, {P̃1, P̃2, . . . , P̃m−1} = {s1E11, s2E22, . . . , sm−1Em−1,m−1}
for some si = s2

i 6= 0. In the same way we infer that {P̃2, P̃3, . . . , P̃m} =
{t1E11, t2E22, . . . , tm−1Em−1,m−1} for some ti = t2i 6= 0. Therefore, there exist
i, j ∈ {1, . . . , m − 1} such that P̃m = tiEii and P̃j = siEii. Consequently,
P̃jP̃m = sitiEii 6= 0, a contradiction. ¤

Lemma 3.4. Assume a semiring S has at least three elements and (a) is COM
and MC or (b) is AC and AN. Suppose n ≥ 2 and Φ : Mn(S) → Mn(S) is
a linear map which preserves idempotents. If Φ(Eii) = 0 for some i, then
Φ(Ejk) = 0 for all j 6= k.

Proof. Let Φ(Eii) = 0 and choose j 6= i arbitrarily. Since Eii + sEij is an
idempotent for all s ∈ S, the same holds for Φ(Eii + sEij) = sΦ(Eij). Hence,

(7) sΦ(Eij)sΦ(Eij) = sΦ(Eij) (s ∈ S).
Now, if S is COM and MC, then (7) implies that

(8) sΦ(Eij)2 = Φ(Eij) = tΦ(Eij)2 (s, t 6= 0).

Since |S| ≥ 3, we can choose such s and t distinct. Therefore, Φ(Eij) = 0.
Otherwise, if S is AC and AN, choose s = 1 + 1 =: 2 and s = 1 in (7)

to deduce 2Φ(Eij) = 4Φ(Eij)2 = 2Φ(Eij)2 + 2Φ(Eij)2 = 2Φ(Eij) + 2Φ(Eij)
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(note that 2 ∈ Z(S)). Now, AC implies that 0 = 2Φ(Eij) = Φ(Eij) + Φ(Eij).
Consequently, by AN,

(9) Φ(Eij) = 0 (j 6= i).

We deduce that
Φ(Eji) = 0 (j 6= i)

in the same way as (9). This ends the proof if n = 2. Otherwise, choose j and k
such that i, j, k are all distinct. Since Eii +Eji + sEik + sEjk is an idempotent
for all s, the same is true for Φ(Eii +Eji + sEik + sEjk) = sΦ(Ejk). We repeat
the procedure above to deduce that Φ(Ejk) = 0. ¤

Proof of Theorem 2.1. We first prove the “if part”. If Φ satisfies (i) and A2 =
A, then s2Φ(A)2 = (sΦ(A))2 = QARQAR = sQA2R = sQAR = s2Φ(A).
Since S is MC, we deduce that Φ(A)2 = Φ(A), i.e., Φ preserves idempotents.
We proceed in the same way if Φ satisfies (ii). The zero map (iii) preserves
idempotents as well.

It remains to prove the “only if part”. Choose arbitrary distinct i and j.
Matrices Φ(Eii + Ejj),Φ(Eii), and Φ(Ejj) are idempotents, i.e.,

Φ(Eii) + Φ(Ejj) = Φ(Eii) + Φ(Ejj) + Φ(Eii)Φ(Ejj) + Φ(Ejj)Φ(Eii).

Note that S is AC by Lemma 3.1. Hence, the above implies that Φ(Eii)Φ(Ejj)+
Φ(Ejj)Φ(Eii) = 0. Multiply this equation with Φ(Eii) from the left, i.e.,

(10) Φ(Eii)Φ(Ejj) + Φ(Eii)Φ(Ejj)Φ(Eii) = 0,

and equation (10) with Φ(Eii) from the right. We deduce that

2Φ(Eii)Φ(Ejj)Φ(Eii) = 0.

Since S is MC with 2 6= 0, it follows that Φ(Eii)Φ(Ejj)Φ(Eii) = 0. We infer
that

(11) Φ(Eii)Φ(Ejj) = 0 (i 6= j)

from (10). Note that 2 = 1 + 1 6= 1 by AC. Hence, |S| ≥ 3.
Assume first that Φ(Eii) = 0 for some i. Then, Φ(A) =

∑n
k=1 akkΦ(Ekk) by

Lemma 3.4. Here, akk is the (k, k)-entry of the matrix A. Since S is not AN,
there exist nonzero x, y ∈ S such that x + y = 0. We may assume that x 6= 1.
Otherwise replace x with 2x and y with 2y. Now, let j 6= i be arbitrary. Since

(12) B := (y + 1)Eii + x(y + 1)Eij + Eji + xEjj and Ejj

are idempotents it follows that x2Φ(Ejj) = xΦ(Ejj). Note that x2 6= x, since
x 6= 0, 1 and S is MC. Consequently, Φ(Ejj) = 0. Since j is arbitrary, it follows
that Φ ≡ 0, i.e., Φ is of the form (iii).

If Φ(Eii) 6= 0 for all i, then, by Lemma 3.2 and (11), there exist matrices
Q,R and nonzero s ∈ S such that

(13) sΦ(Eii) = QEiiR (i = 1, . . . , n)
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and QR = RQ = sI. If i 6= j, then Φ(Eii + tEij) is an idempotent for any t.
Hence, Φ(Eii)+tΦ(Eij) = Φ(Eii)+t2Φ(Eij)2+tΦ(Eii)Φ(Eij)+tΦ(Eij)Φ(Eii).
By AC,

(14) tΦ(Eij) = t2Φ(Eij)2 + tΦ(Eii)Φ(Eij) + tΦ(Eij)Φ(Eii).

Combine equation
(
(14), t = 2

)
together with equation

(
(14), t = 1

)
multiplied

by 2. We deduce that 2Φ(Eij)2 = 0 by AC. Hence, Φ(Eij)2 = 0, i.e., sΦ(Eij) =
sΦ(Eii)Φ(Eij) + Φ(Eij)sΦ(Eii). Consequently, we infer from (13) that

(15) RΦ(Eij)Q = EiiRΦ(Eij)Q + RΦ(Eij)QEii.

In the same way we deduce that

(16) RΦ(Eij)Q = EjjRΦ(Eij)Q + RΦ(Eij)QEjj .

Equations (15) and (16) imply that RΦ(Eij)Q = xijEij + yijEji, i.e.,

(17) s2Φ(Eij) = Q(xijEij + yijEji)R

for some xij , yij ∈ S. Since Φ(Eij)2 = 0, we deduce that xijyij = 0, i.e., xij = 0
or yij = 0. From (13), (17), and equation (s2Φ(B))2 = s2(s2Φ(B)), where B
is defined in (12), we infer that (y + 1)(xijxji + yijyji) + s2x = s2. Add s2y to
both sides of this equation. Since x 6= 1, i.e., y + 1 6= 0, we deduce that

(18) xijxji + yijyji = s2.

Hence, exactly one element in {xij , yij} is nonzero. Moreover, xij 6= 0 ⇔ xji 6=
0.

Now, for arbitrary i, the equation (s2Φ(
∑n

k=1 Eik))2 = s2(s2Φ(
∑n

k=1 Eik)),
together with (13) and (17), shows that either xik = 0 and yik 6= 0 for all k 6= i
or conversely xik 6= 0 and yik = 0 for all k 6= i. Consequently, it follows that

(19) s2Φ(Eij) = QxijEijR (∀i∀j, i 6= j)

or

(20) s2Φ(Eij) = QyijEjiR (∀i∀j, i 6= j).

We may assume that (19) is correct. Otherwise consider the map Ψ(A) :=
Φ(A)tr.

Equation (18) transforms now into xijxji = s2. If n ≥ 3, then C := Eii +
Eik +Eji +Ejk is idempotent for arbitrary distinct i, j, k. Hence, the equation

(21) xjixik = sxjk

follows from (s2Φ(C))2 = s2(s2Φ(C)). If we define xii := s for all i, then (21)
holds for arbitrary i, j, k (they are allowed to be equal). By (19), sΦ(Eij)Q =
QxijEij and sRΦ(Eij) = xijEijR. Hence, the i-th column of the matrix Qxij

and the j-th row of the matrix xijR are divisible by s, i.e., every their en-
try is of the form st for some t (this is obvious when i = j). Consequently,
Qdiag(x11, x21, . . . , xn1) = sQ̃ and diag(x11, x12, . . . , x1n)R = sR̃ for some
matrices Q̃ and R̃. It follows from (21) that sQ̃sR̃ = s3I = sR̃sQ̃, i.e.,
Q̃R̃ = R̃Q̃ = sI. Again, by (21), sQ̃EijsR̃ = QsxijEijR = s3Φ(Eij), i.e.,
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sΦ(Eij) = Q̃EijR̃ for all i and j. Therefore, Φ satisfies (i). Clearly, if (20) is
correct instead of (19), then Φ is of the form (ii). ¤

A big part of the proof of Theorem 2.3 is almost identical as its counterpart
in Theorem 2.1. Therefore we only sketch the differences.

Sketch of the proof of Theorem 2.3. Note that the equation 2t = 0 still implies
t = 0, since S is AN. Hence, we deduce (11) as in the proof above. Since S is
also AC, we see that 1 6= 1 + 1 6= 0, i.e., |S| ≥ 3. Therefore, if Φ(Eii) = 0 for
some i, we infer that Φ(A) =

∑n
k=1 akkΦ(Ekk) from Lemma 3.4. Hence, Φ is

of the form (iii’) for Pk = Φ(Ekk). If Φ(Eii) 6= 0 for all i, then, by Lemma 3.3,
there exist a permutation matrix P and x11, . . . , xnn ∈ S\{0} such that

(22) Φ(Eii) = P (xiiEii)P−1

and x2
ii = xii for all i. Since Φ(Eii + Eij) and Φ(Eii + 2Eij) are idempotents

for i 6= j, and since 2 ∈ Z(S), we deduce that

(23) Φ(Eij) = P (xijEij + yijEji)P−1

for some xij , yij ∈ S, similarly as in the previous proof. Again, xij = 0 or
yij = 0. If n = 2, then Φ is of the form (iv’) by (22) and (23). Let n ≥ 3. If
Φ(Eij) = 0 for all i and j distinct, then Φ is of the form (iii’). Assume now
that Φ(Eij) 6= 0 for some i 6= j. We may say that xij 6= 0 and yij = 0 (the
proof is symmetrical if xij = 0 and yij 6= 0). Since matrices Φ(

∑n
k=1 Eik) and

Φ(
∑n

k=1 Ekj) are idempotents, and xij 6= 0, we deduce that yik = 0 for all
k 6= i and ykj = 0 for all k 6= j. Choose k 6= i, j and t ∈ S arbitrarily. Matrix
Φ(tEij + Eik + tEkj + Ekk) is idempotent. Hence,

(24) xiktxkj = txij .

In particular, xik and xkj are nonzero. Since n ≥ 3 and k is arbitrary, we can
repeat the procedure above and deduce that

Φ(Eij) = P (xijEij)P−1 6= 0

for all i and j. Moreover, (24) holds for arbitrary distinct i, j, k. Hence, Φ is
of the form (i’) for X := [xij ]. If we would assume that xij = 0 and yij 6= 0,
then Φ would be of the form (ii’) for X := [yij ]tr, where yii := xii. ¤

Proof of Corollary 2.5. If Φ is not of the form (iii”), then it is of the form (i’)
or (ii’) by Theorem 2.3. By Remark 2.4, x2

ii = xii 6= 0, i.e., xii = 1 since S is
MCL or MCR. Moreover, xkjxjixij = xkixij = xkj 6= 0. Similarly, xjixijxjk =
xjk 6= 0. Hence, by MCL/MCR, xjixij = 1 for all i 6= j. Now, Remark 2.4
implies that xijt = xijtxjkxkj = txikxkj = txij , so the matrix X has all entries
in Z(S). Let V be the diagonal matrix diag(x11, x21, . . . , xn1). Then, V −1 =
diag(x11, x12, . . . , x1n). Moreover, A ◦ X = V AV −1 and Atr ◦ X = V AtrV −1

for all A. Hence, the form (i’) gives (i”) and the form (ii’) gives (ii”). If Φ is of
the form (ii”), then st = ts for any s, t ∈ S, since Φ(E11 + sE21 + tE13 + stE23)
is idempotent. Hence, S is COM. ¤
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Proof of Corollary 2.6. The “if” part is obvious. We will prove the “only if”
part. If S is not AN, then it satisfies the assumptions of Theorem 2.1 and Φ
fits one of the forms (i)-(iii). If S is AN, then it satisfies the assumptions of
Corollary 2.5 and Φ fits one of the forms (i”)-(iii”). Clearly, the forms (i”)
and (ii”) are a special type of (i) and (ii) respectively. Suppose now that Φ
preserves idempotents and is of the form (iii”). If it is not the zero map (iii),
then there exists i such that Pi 6= 0. Choose an idempotent A = [ajk] ∈ Mn(S)
and j ∈ {1, . . . , n} arbitrarily. If a permutation matrix P is such that the (i, i)-
th entry of the matrix PAP−1 equals ajj , then the equation Φ(PAP−1)2Pi =
Φ(PAP−1)Pi implies that a2

jjPi = ajjPi. Since Pi 6= 0, it follows that a2
jj =

ajj , i.e., ajj ∈ {0, 1}. ¤

4. Direct products of semirings

If {Sλ |λ ∈ Λ} is a family of semirings, then the direct product S = ×λ∈ΛSλ

is a semiring with the operations of addition and multiplication defined com-
ponentwise. Given s ∈ S let sλ ∈ Sλ be its λ-th component. Similarly, for
A = [aij ] ∈ Mn(S) let Aλ denote the matrix [(aij)λ] ∈ Mn(Sλ). Note that
(A + B)λ = Aλ + Bλ and

(25) (AB)λ = AλBλ

for arbitrary A, B ∈ Mn(S).

Lemma 4.1. If Φ : Mn(S) → Mn(S) is a linear map, then, for each λ ∈ Λ,
there exists a unique linear map Φλ : Mn(Sλ) → Mn(Sλ) such that Φ(A)λ =
Φλ(Aλ) for all A ∈ Mn(S).

Proof. For any B ∈ Mn(Sλ) define Φλ(B) := Φ(C)λ, where C ∈ Mn(S) is such
that Cλ = B and Cµ = 0 for µ 6= λ. Let s ∈ S satisfy sλ = 1 and sµ = 0 for
µ 6= λ. Then, Φ(A)λ = (sΦ(A))λ = Φ(sA)λ = Φλ(Aλ). Clearly, Φλ is linear
and unique. ¤

We infer from (25) that A is idempotent if and only if Aλ is idempotent for
all λ. Hence, we have the following lemma.

Lemma 4.2. A map Φ : Mn(S) → Mn(S) is linear and preserves idempotents
if and only if all maps Φλ are linear and preserve idempotents.

Recall that an element s of a semiring is called multiplicatively cancellable if
each of the equations st = su and ts = us implies t = u for any t and u.

Theorem 4.3. Let Sλ satisfy the assumptions of Theorem 2.1 for all λ ∈ Λ. If
n ≥ 2, then a linear map Φ : Mn(S) → Mn(S) preserves idempotents if and only
if there exist a multiplicatively cancellable s ∈ S, matrices Q,R ∈ Mn(S) with
QR = RQ = sI, and orthogonal idempotents f1, f2 ∈ S such that Φ satisfies
the form

sΦ(A) = Q
(
f1A + f2A

tr
)
R.
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Proof. The “if” part is proved similarly as in Theorem 2.1. To prove the “only
if” part assume that Φ is linear and preserves idempotents. By Lemma 4.2 the
same holds for the maps Φλ. By Theorem 2.1 there exist matrices Q, R ∈ Mn(S)
and s ∈ S such that for any λ the map Φλ fits the form

sλΦλ(B) = QλBRλ, or sλΦλ(B) = QλBtrRλ, or sλΦλ(B) = 0 = Qλ ·0 ·Rλ,

where sλ 6= 0, i.e., s is multiplicatively cancellable. Moreover, QR = RQ = sI.
Denote with Λ1,Λ2,Λ3 the sets of all λ for which Φλ is of the first, second, and
third form respectively. Let the λ-th component of fi ∈ S be 1 if λ ∈ Λi and 0
otherwise. Then, sΦ(A) = Q(f1A + f2A

tr + f3 · 0)R = Q(f1A + f2A
tr)R for all

A. Clearly, for idempotents f1 and f2, f1f2 = 0 = f2f1 holds. ¤

An interesting example of a direct product is Zm, the semiring of integers
modulo m, where m = p1p2 · · · pk is a product of distinct odd primes. In fact,
the map ϕ : Zm → ×k

λ=1Zpλ
, defined by ϕ(s)λ := s, is a semiring isomorphism

(surjectiveness is an immediate consequence of the Chinese remainder theorem).
Since all Zpλ

are fields, we see from the proof above, that in this case s = 1
and R = Q−1. Moreover, Φ(A) = eQ(fA + (1 − f)Atr)Q−1 for idempotents
e := f1 + f2 and f := f1 + f3.

Though written in a slightly different way, the approach of viewing a semiring
as a direct product of “nicer”, i.e., MC semirings was used in [13] and [11,
Theorem 3.2], where bijective linear preservers of idempotents and linear strong
preservers of idempotents on matrices over general finite Boolean algebra were
classified by reducing the problem to the analogue for binary Boolean algebra.
Recall that a finite Boolean algebra is isomorphic to a direct product of binary
Boolean algebras.

Remark 4.4. A similar result to Theorem 4.3 can be proved if some Sλ fits the
assumptions of Theorem 2.3 instead of Theorem 2.1.

5. Examples and counterexamples

Firstly we list some interesting examples of semirings satisfying the assump-
tions of Theorem 2.1 and Theorem 2.3.

Example 5.1. Any commutative ring with 1, which is zero divisor free and of
characteristic not 2 fits the assumptions of Theorem 2.1. However, there exist
semirings which are COM, MC, are not AN, and are not rings. An example
of such is the semiring of all real polynomials p, where the last coefficient, i.e.,
p(0) is nonnegative. Addition and multiplication are the usual ones.

Example 5.2. Two important semirings which satisfy the assumptions of The-
orem 2.3 and Corollary 2.5 are Z+, the semiring of all nonnegative integers,
and R+, the semiring of all nonnegative reals, with operations defined as usual.
However, there are many more semirings which are AC, ZDF, and AN. In fact,
for arbitrary semiring S there exists a semiring S′ which is AC, ZDF, and AN,



816 MARKO OREL

and a surjective semiring homomorphism ϕ : S′ → S (see the construction in [8,
Proposition 8.33]).

Example 5.3. Let S be a semiring, Σ a nonempty set, and Σ∗ the free monoid
defined by Σ, i.e., Σ∗ consist of all finite words with letters from Σ, where the
operation is just the concatenation of words. The set S〈〈Σ〉〉 of all functions
f : Σ∗ → S, equipped with componentwise addition and multiplication defined
by (fg)(w) =

∑{f(w′)g(w′′) |w′w′′ = w}, is known as the semiring of formal
power series in Σ over S. This semiring is a frequently used as a tool in the
theory of languages and automata (see [8, pp. 31–33] for some details). It
can be proved that if S satisfies the assumptions of Theorem 2.3, then so does
S〈〈Σ〉〉. The analogue holds also for Corollary 2.5. We leave the proofs to the
reader.

Note that the map Φ in Theorem 2.3 can in fact be of the form (iii’) or (iv’).

Example 5.4. If S = Z+ with usual operations, then the maps (iii’) and (iv’)
always preserve idempotents.

Below we show that, except for COM in Theorem 2.1, neither assumption
on the semiring in Theorem 2.1 and Theorem 2.3 can be omitted.

Counterexamples 5.5. (a) We cannot drop MC in Theorem 2.1. Consider
the semiring S = ×λ∈ΛSλ from Theorem 4.3, where |Λ| ≥ 2, and the map
Φ(A) = eA for e2 = e /∈ {0, 1}. This semiring satisfies all other assumptions
of Theorem 2.1, while Φ preserves idempotents and is not of the forms (i) and
(ii), since Φ(I) 6= I.

(b) We cannot drop the assumption that S is not AN in Theorem 2.1. Let S
be a binary Boolean algebra, i.e., S = {0, 1}, where 1+1 = 1. Then, S satisfies
all other assumptions of Theorem 2.1. Let J be the matrix with all entries
equal 1. The map, defined by Φ(0) = 0 and Φ(A) = J for A 6= 0, is linear and
preserves idempotents. It is not of the forms (i) and (ii), since its image equals
{0, J} = {0, Φ(E12)}.

(c) We cannot drop the assumption that 1 + 1 6= 0 in Theorem 2.1. Any
field of characteristic 2 is a semiring that satisfies all other assumptions of
Theorem 2.1. The linear map Φ(A) = (

∑n
i=1 aii)I preserves idempotents. It is

not of the forms (i) and (ii), since Φ(Eii) = Φ(Ejj) for all i and j. For some
other examples see [1, 12].

(d) We cannot drop AC in Theorem 2.3. See counterexample in item (b).
(e) We cannot drop ZDF in Theorem 2.3. The semiring Z+ × Z+ with

componentwise addition and multiplication satisfies all other assumptions of
Theorem 2.3. The linear map Φ([(aij , bij)]) = [(aij , bji)] preserves idempotents
by Lemma 4.2. It is not of the forms (i’)-(iv’) since the matrix Φ(E12) has two
nonzero entries.

(f) We cannot drop AN in Theorem 2.3. See counterexample in item (c).

At the end we show that the conclusions of Theorem 2.1 and Theorem 2.3
are the best possible.
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Counterexample 5.6. In Theorem 2.1 we cannot always assume that s = 1.
If Z is the set of all integers, then the subset S = {a+i b

√
5 | a, b ∈ Z} of complex

numbers is a semiring for usual addition and multiplication, and satisfies all
assumptions of Theorem 2.1. Let

Q =
(

3, 1− i
√

5
−1 + i

√
5, 2 + i

√
5

)
and R =

(
3, 1 + i

√
5

−1− i
√

5, 2− i
√

5

)
.

Then, QR = RQ = 3I and the map, defined by 3Φ(A) = QAR, maps M2(S)
into M2(S) and preserves idempotents. If there exists an invertible T = [tij ] ∈
M2(S) such that Φ(A) = TAT−1 or Φ(A) = TAtrT−1, then the equation
Φ(E11)T = TE11 implies that 2t11 +(1+ i

√
5)t21 = 0 and 3t12 +(1+ i

√
5)t22 =

0. Since T is invertible, all entries tij are nonzero. By equation Φ(E11) =
TE11T

−1 we see that the entries of the matrix T−1 at positions (1, 1) and
(1, 2) equal (−1 + i

√
5)/t21 and −2/t21 respectively. It is now easy to check

that at least one of these two numbers or the number t11 is not an element of
S, for any t21 ∈ S. Hence, such T does not exist.

The difference between Theorem 2.3 and Corollary 2.5 is pointed out below.

Counterexample 5.7. Let S = Z+ × Z+ with componentwise addition and
multiplication given by (a, b) · (c, d) := (ac, ad + bc + bd). This semiring fits
Theorem 2.3 but not Corollary 2.5. In fact, it is not MCL/MCR since (0, 1) ·
(1, 0) = (0, 1) · (0, 1) = (1, 0) · (0, 1). Consider the linear map Φ : Mn(S) →
Mn(S) defined by Φ(A) = (0, 1) · A. It preserves idempotents and it is not
of the forms (i”)-(iii”) since Φ(I) 6= I and Φ(E12) 6= 0. Less trivial example
of a such map is Ψ(A) = A ◦ X, where all nondiagonal entries of the matrix
X equal (0, 1), while all diagonal entries equal (1, 0). This map is not of the
forms (i”)-(iii”), since Ψ(E12)Ψ(E21) /∈ {Ψ(E11), Ψ(E22), 0}. The proof that Ψ
preserves idempotents is left to the reader.
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[7] D. Dolžan and P. Oblak, Idempotent matrices over antirings, Linear Multilinear Algebra

Appl. 431 (2009), no. 5-7, 823–832.



818 MARKO OREL

[8] J. S. Golan, The theory of semirings with applications in mathematics and theoretical
computer science, Pitman Monographs and Surveys in Pure and Applied Mathematics,
54. Longman Scientific & Technical, Harlow; copublished in the United States with John
Wiley & Sons, Inc., New York, 1992.

[9] U. Hebisch and H. J. Weinert, Semirings: algebraic theory and applications in computer
science, translated from the 1993 German original. Series in Algebra, 5. World Scientific
Publishing Co., Inc., River Edge, NJ, 1998.

[10] N. Jacobson, Lectures in Abstract Algebra. Vol. II. Linear algebra, D. Van Nostrand
Co., Inc., Toronto-New York-London, 1953.

[11] S. Kirkland and N. J. Pullman, Linear operators preserving invariants of nonbinary
Boolean matrices, Linear Multilinear Algebra 33 (1993), no. 3-4, 295–300.

[12] S. Liu, Linear maps preserving idempotence on matrix modules over principal ideal
domains, Linear Algebra Appl. 258 (1997), 219–231.

[13] S.-Z. Song, K.-T. Kang, and L. B. Beasley, Idempotent matrix preservers over Boolean
algebras, J. Korean Math. Soc. 44 (2007), no. 1, 169–178.

IMFM
Jadranska 19, 1000 Ljubljana, Slovenia
E-mail address: marko.orel@fmf.uni-lj.si


