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TOTAL GRAPH OF A COMMUTATIVE SEMIRING WITH

RESPECT TO IDENTITY-SUMMAND ELEMENTS

Shahabaddin Ebrahimi Atani, Saboura Dolati Pish Hesari,

and Mehdi Khoramdel

Abstract. Let R be an I-semiring and S(R) be the set of all identity-
summand elements of R. In this paper we introduce the total graph
of R with respect to identity-summand elements, denoted by T (Γ(R)),
and investigate basic properties of S(R) which help us to gain interesting
results about T (Γ(R)) and its subgraphs.

1. Introduction

Associating a graph to an algebraic structure is a research subject and has
attracted considerable attention. In fact, the research in this subject aims at
exposing the relationship between algebra and graph theory and at advancing
the application of one to the other.

In 1988, Beck [11] introduced the idea of a zero-divisor graph of a commu-
tative ring R with identity. This notion was later redefined by Anderson and
Livingston in [6]. Since then, there has been a lot of interest in this subject and
various papers were published establishing different properties of these graphs
as well as relations between graphs of various extensions. The total graph of
a commutative ring was introduced by Anderson and Badawi in [3], as the
graph with all elements of R as vertices, and two distinct vertices x, y ∈ R are
adjacent if and only if x + y ∈ Z(R) where Z(R) is the set of all zero divisor
of R. In [4], Anderson and Badawi studied the subgraph T0(Γ(R)) of T (Γ(R))
with vertices R − {0}. Recently, the study of graphs of rings are extended to
include semirings as in [15, 16, 18, 19].

Semirings have proven to be useful in theoretical computer science, in par-
ticular for studying automata and formal languages, hence, ought to be in the
literature [22, 24]. From now on let R be a commutative semiring with identity.
In [18], the present authors introduced the identity-summand graph, denoted
by Γ(R), is the graph which vertices are all non-identity identity-summands of
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R and two distinct vertices joint by an edge when the sum of them is 1. We
use the notation S(R) to refer to the set of elements of R that are identity-
summand (we use S∗(R) to denote the set of non-identity identity-summands
of R), we say that r ∈ R is an identity-summand of R, if there exists 1 6= a ∈ R
such that r + a = 1.

Let R be an I-semiring (i.e., 1 + r = 1 for each r ∈ R). Studying the
S(R) runs into the issue of a profound lack of algebraic structure, highlighted
by a lack of closure under multiplication. This unfortunate lack of algebraic
structure is the focus of our investigations in this paper. We define the total
graph of a commutative semiring R with respect to identity-summand elements
denoted by T (Γ(R)) and its subgraphs S(Γ(R)) and S∗(Γ(R)).

In Section 3, we show that T (Γ(R)) and S∗(Γ(R)) are not connected by
giving an example but its subgraph S(Γ(R)) is always connected. Also by
using I-semiring condition, it is proved that diam(S(Γ(R))) ∈ {1, 2} and
gr(S(Γ(R))) ∈ {3,∞}. It is shown that diam(S(Γ(R))) = 1 if and only if S(R)
is a co-ideal of R and gr(S(Γ(R))) = 3 if and only if |S(R)| ≥ 4. Moreover, we
find chromatic number of S(Γ(R)).

In Section 4, S∗(Γ(R)) is investigated. At the first of this section, one of the
important properties of S(R) is introduced, which help us to gain interesting
results about S∗(Γ(R)). It is shown that S(R) is a union of all minimal prime
co-ideals of R. It is proved that S∗(Γ(R)) is connected if and only if |min(R)| 6=
2, diam(S∗(Γ(R))) ∈ {1, 2} and gr(S∗(Γ(R))) ∈ {3,∞}. Also it is investigated
when gr(S∗(Γ(R))) = gr(Γ(R)) or gr(S∗(Γ(R))) = gr(S(Γ(R))).

2. Preliminaries

In order to make this paper easier to follow, we recall various notions which
will be used in the sequel. For a graph Γ by E(Γ) and V (Γ) we denote the
set of all edges and vertices, respectively. A graph G is called connected if for
any vertices x and y of G there is a path between x and y. Otherwise, G is
called disconnected. The maximal connected subgraphs of G are its connected
components. Here, maximal means that including any more vertices would
yield a disconnected subgraph. Any graph is a union of its connected compo-
nents. If the number of connected components of G is equal to one, then G
is, of course, connected. The distance between two distinct vertices a and b,
denoted by d(a, b), is the length of the shortest path connecting them (if such
a path does not exist, then d(a, b) = ∞, also d(a, a) = 0). The diameter of
graph Γ, denoted by diam(Γ), is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph is
complete if it is connected with diameter less than or equal to one. We denote
the complete graph on n vertices by Kn. The girth of a graph Γ, denoted gr(Γ),
is the length of a shortest cycle in Γ, provided Γ contains a cycle; otherwise;
gr(Γ) = ∞. For r a nonnegative integer, an r-partite graph is one whose vertex
set can be partitioned into r subsets so that no edge has both ends in any
one subset. A complete r-partite graph is one in which each vertex is joined
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to every vertex that is not in the same subset. The complete bipartite (i.e.,
2-partite) with part sizes m and n is denoted by Km,n. We will sometimes call
K1,n a star graph. A clique of a graph is its maximal complete subgraph and
the number of vertices in the largest clique of graph G, denoted by w(G), is
called the clique number of G.

A commutative semiring R is defined as an algebraic system (R,+, .) such
that (R,+) and (R, ·) are commutative semigroups, connected by a(b + c) =
ab + ac for all a, b, c ∈ R, and there exist 0, 1 ∈ R such that r + 0 = r and
r0 = 0r = 0 and r1 = 1r = r for each r ∈ R. In this paper all semirings
considered will be assumed to be commutative semirings with non-zero identity.

Definition 2.1. Let R be a semiring.
(1) A non-empty subset I of R is called co-ideal, if it is closed under multi-

plication and satisfies the condition r + a ∈ I for all a ∈ I and r ∈ R (so 0 ∈ I
if and only if I = R). A co-ideal I of R is called strong co-ideal provided that
1 ∈ I [17, 22].

(2) A co-ideal I of R is called subtractive if x, xy ∈ I, then y ∈ I (so every
subtractive co-ideal is a strong co-ideal) [17].

(3) A semiring R is called an I-semiring if r + 1 = 1 for all r ∈ R [18].
(4) A proper co-ideal P of R is called prime if x + y ∈ P , then x ∈ P or

y ∈ P . The set of all prime (resp. minimal prime) co-ideals of R is denoted by
co-Spec(R) (resp. min(R)) [17].

(5) If D is an arbitrary nonempty subset of R, then the set F (D) consisting
of all elements of R of the form d1d2 · · · dn + r (with di ∈ D for all 1 ≤ i ≤ n
and r ∈ R) is a co-ideal of R containing D [17, 24].

(6) A semiring R is called co-semidomain, if a+ b = 1 (a, b ∈ R), then either
a = 1 or b = 1 [17].

(7) We say that a subset T ⊆ R is additively closed if 0 ∈ T and a+ b ∈ T
for all a, b ∈ T .

(8) An ideal I of R is called k-ideal if x, x+y ∈ I, then y ∈ I, for all x, y ∈ R.
(9) An element a ∈ R is called co-regular if a is not an identity-summand

element and Co−Reg(R) = R \ S(R).

The following theorem and proposition are used in the sequel and can be
found in [18].

Proposition 2.2. Let R be a commutative I-semiring. Then

(1) ([18, Proposition 2.5]) The following statements hold:
(a) If J is a co-ideal, then J is a strong co-ideal of R. Moreover, if xy ∈ J ,

then x, y ∈ J for every x, y ∈ R. In particular, J is subtractive;
(b) The set (1 : x) = {r ∈ R : r + x = 1} is a strong co-ideal of R for every

x ∈ S(R).
(2) ([18, Theorem 2.8]) If {Pα}α∈Λ is the set of all prime co-ideals of R, the

following statements hold:
(a) ∩α∈ΛPα = {1};
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(b) If Λ is a finite set, then ∩n
i=1Pi = {1} and {1} 6= ∩1≤i≤n,i6=jPi for each

1 ≤ j ≤ n.

Theorem 2.3. Let R be an I-semiring. Then

(1) ([18, Theorem 3.3]) The following statements hold:
(a) Γ(R) is a connected graph with diam(Γ(R)) ≤ 3;
(b) If |S∗(R)| ≥ 3, then Γ(R) is not a complete graph;
(c) If |S∗(R)| ≥ 3, then diam(Γ(R)) = 2 or 3.
(2) ([18, Theorem 4.5]) Γ(R) is complete bipartite if and only if there exist

two distinct prime co-ideals P1 and P2 of R such that P1 ∩ P2 = {1}.
(3) ([18, Theorem 5.4]) w(Γ(R)) = |min(R)|.
(4) ([18, Theorem 3.5]) If Γ(R) contains a cycle, then gr(Γ(R)) ≤ 4.

The proof of the following lemmas is well-known, but we give the details for
convenience.

Lemma 2.4. Let R be a semiring. If |S(R)| = 1, then R is a co-semidomain.

Moreover, if R is an I-semiring which is not co-semidomain, then |S(R)| 6= 1, 2.

Proof. Let a + b = 1 for some a, b ∈ R. Let a 6= 1. By definition of S(R),
b ∈ S(R) = {1}. Thus R is a co-semidomain. For the moreover statement, if
S(R) = {1, a}, then we have a+ a = 1. Hence a = a.1 = a(1 + 1) = a+ a = 1,
a contradiction. �

Lemma 2.5. Let I be a subtractive co-ideal of a semiring R. Then (I : a) =
{r ∈ R : r + a ∈ I} is a subtractive co-ideal of R for all a ∈ R.

Proof. Clearly, 1 ∈ (I : a). If x, y ∈ (I : a), then x + a ∈ I and y + a ∈ I,
implying a2 + ax + ay + xy ∈ I. Since (xy + a)(1 + a)(1 + y)(1 + x) ∈ I,
xy + a ∈ I by (1). Thus xy ∈ (I : a). As I is a co-ideal, r + x+ a ∈ I for each
r ∈ R and so x+ r ∈ (I : a) for each r ∈ R. This shows that (I : a) is a co-ideal
of R. Now let xy, x ∈ (I : a). Then xy+ a+ y+xa = (x+1)(y+ a) ∈ I, which
gives y + a ∈ I, and so y ∈ (I : a), as desired. �

3. Total graph of semirings

In this section, we introduce the total graph of a semiring R with respect to
identity-summand elements.

Definition 3.1. Let R be an I-semiring. The total graph of R, denoted by
T (Γ(R)), is the graph with all elements of R as vertices, and for distinct x, y ∈
R, the vertices x and y are adjacent if and only if xy ∈ S(R). S(Γ(R)) (resp.
Co − Reg(Γ(R)), S∗(Γ(R))) denotes the subgraph of T (Γ(R)) with vertex set
S(R) (resp. Co−Reg(R), S∗(R)).

Here we consider the following question: If R is a semiring, then do we
have T (Γ(R)) is connected? Disconnectivity is a similarity between Γ(R) and
T (Γ(R)) for a commutative semiring R and also it is one important difference
between them when R is an I-semiring.
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In the following, we show that in general, for a semiring R, the total graph
of identity-summand elements of R and it’s subgraphs S∗(Γ(R)) and Co −
Reg(Γ(R)) are not connected but the subgraph S(Γ(R)) of R is always con-
nected. Theorem 3.7 shows that the condition “R is an I-semiring” is not
enough to force T (Γ(R)) to be connected, but it is enough for Γ(R) (Theorem
2.3).

Example 3.2. (1) Let R = (Z+ × Z
+,+, ·). Then S∗(R) = {(1, 0), (0, 1)}.

It can be easily seen that T (Γ(R)), S∗(Γ(R)) and Co − Reg(Γ(R)) are not
connected and S(Γ(R)) is connected.

(2) Let R = (Z+×Z
+×Z

+,+, ·). Then S∗(R) = {(1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 0), (1, 0, 1), (0, 1, 1)}. It can be easily seen that S∗(Γ(R)) is connected and
R is not an I-semiring.

Among the subgraphs of T (Γ(R)), which are introduced in above, S(Γ(R))
is connected in general. So we characterize the diameter and girth of S(Γ(R))
in the following theorems. After that we use the “I-semiring” condition for R
to prove some important properties of S(R), which improve our result about
the total graph of R in this paper.

Theorem 3.3. Let R be a semiring. Then S(Γ(R)) is connected and

diam(S(Γ(R))) ∈ {1, 2}.

Proof. Since 1 ∈ S(R), x− 1− y is a path in S(Γ(R)) for each x, y ∈ S(R). So
S(Γ(R)) is connected and diam(S(Γ(R))) ∈ {1, 2}. �

Theorem 3.4. Let R be a semiring. Then gr(S(Γ(R))) ∈ {3,∞}.

Proof. If xy ∈ S(R) for some x, y ∈ S∗(R), then 1 − x − y − 1 is a cycle in
S(Γ(R)), hence gr(S(Γ(R))) = 3. Let xy /∈ S(R) for each x, y ∈ S∗(R). So
S(Γ(R)) does not contain any cycle. Hence gr(S(Γ(R))) = ∞. �

Remark 3.5. Let R be an I-semiring, then S(R) is closed under additive oper-
ation.

Lemma 3.6. Let R be an I-semiring. The following statements hold:
(i) For each x, y ∈ R, if xy = 1, then x = 1 and y = 1;
(ii) If {1} 6= S(R) is finite, then S(R) is not a co-ideal of R.

(iii) S(R) is a union of prime co-ideals of R.

(iv) Co−Reg(R) is an ideal of R.

(v) S(R) is a co-ideal of R if and only if Co − Reg(R) is a prime ideal of

R.

Proof. (i) Let xy = 1 for some x, y ∈ R. Since R is an I-semiring, x = x+xy =
x+ 1 = 1 and by the similar way y = 1.

(ii) Let S(R) = {a1, a2, . . . , an}. Suppose, on the contrary, S(R) is a co-ideal
of R. So a1a2 · · · an ∈ S(R), hence a1a2 · · · an = ai for some 1 ≤ i ≤ n. By (i),
ai 6= 1. Since ai ∈ S(R), there exists 1 6= aj ∈ S(R) such that ai + aj = 1.
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So aj = a1a2 · · · an + aj = ai + aj = 1, a contradiction. Thus S(R) is not a
co-ideal of R.

(iii) Let
∑

be the set of all co-ideals in which every element is an identity
summand. If S(R) = {1}, then R is a co-semidomain and there is nothing to
prove. So assume that S(R) 6= {1}. Since for each x ∈ S∗(R), F ({x}) ∈

∑
,∑

6= ∅. It is clear that
∑

has a maximal element by Zorn’s Lemma. Let P be
a maximal element of

∑
. We show that P is prime in R. Let x + y ∈ P and

x, y /∈ P . Since P ⊂ (P : x) and P is maximal in
∑

, (P : x) /∈
∑

. So there
exists z ∈ (P : x), which is not identity-summand. We claim that (P : z) ∈

∑
.

Let 1 6= w ∈ (P : z), so w+z ∈ P . Since z is not identity-summand , w+z 6= 1.
Thus w + z + u = 1 for some 1 6= u ∈ R. Since z is not identity-summand,
w + u = 1. Thus w is an identity-summand, and (P : z) ∈

∑
. This is a

contradiction with maximality of P , because P ⊂ (P : z), so P is a prime
co-ideal of R. It is clear that S(R) is a union of all maximal elements of

∑
.

So S(R) is a union of prime co-ideals of R.
(iv) By (iii), S(R) = ∪i∈ΛPi, where Pi ∈ co − Spec(R) for each i ∈ Λ. Let

x, y ∈ R\S(R) = Co−Reg(R). We show that x+y ∈ R\S(R). If x+y ∈ S(R),
then x + y ∈ Pi for some i ∈ Λ. Since Pi is a prime co-ideal of R, x ∈ Pi or
y ∈ Pi, a contradiction. Hence x+ y ∈ R \S(R). Now, let x ∈ R \S(R), r ∈ R.
By (i), xr 6= 1. If xr ∈ S(R), then there exists 1 6= y ∈ S(R) such that
xr ∈ (1 : y). Since (1 : y) is a co-ideal of R, x ∈ (1 : y) ⊆ S(R) by Proposition
2.2(1), a contradiction. Thus xr ∈ R \ S(R) and R \ S(R) is an ideal of R.

(v) Let S(R) be a co-ideal of R and ab ∈ Co−Reg(R). If a, b /∈ Co−Reg(R),
then a, b ∈ S(R) gives ab ∈ S(R), a contradiction. Conversely, let Co−Reg(R)
be a prime ideal of R. We show S(R) is a co-ideal. It suffices to show that
S(R) is closed under multiplication. Let a, b ∈ S(R). If ab /∈ S(R), then
ab ∈ Co−Reg(R), which implies a ∈ Co−Reg(R) or b ∈ Co− Reg(R), since
Co − Reg(R) is a prime ideal of R, a contradiction. Hence ab ∈ S(R) for
each a, b ∈ S(R) (Since R is an I-semiring a + r ∈ S(R) for each r ∈ R and
a ∈ S(R)). �

Now, in the following theorem, we investigate total graph of a commutative
semiring based on identity-summand elements by the result which we gain from
Lemma 3.6 . It is clear that V (T (Γ(R))) = Co−Reg(R) ∪ S(R).

Theorem 3.7. Let R be an I-semiring. Then

(i) No element of Co−Reg(R) is adjacent to any element of S(R);
(ii) Co−Reg(Γ(R)) is totally disconnected;
(iii) T (Γ(R)) is always disconnected;
(iv) T (Γ(R)) is an empty graph if and only if R is a co-semidomain. More-

over, for each I-semiring R, Co−Reg(Γ(R)) is an empty graph.

Proof. (i) Let x ∈ Co−Reg(R). If x is adjacent to y for some y ∈ S(R), then
xy ∈ S(R). By Lemma 3.6(i), xy 6= 1, so xy ∈ (1 : r) for some 1 6= r ∈ S(R).
By Proposition 2.2(1), x ∈ (1 : r) ⊆ S(R), a contradiction.
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(ii) Let x, y ∈ Co − Reg(R) are adjacent in T (Γ(R)). Hence xy ∈ S(R).
By the similar argument in (i), x, y ∈ S(R), a contradiction. So for each
x, y ∈ Co−Reg(R), x, y are not adjacent.

(iii) By (ii), Co − Reg(Γ(R)) is totally disconnected, so T (Γ(R)) is always
disconnected.

(v) Is clear by (ii).
The moreover statement is clear by (ii). �

The following result is an immediate consequence of Theorem 3.7

Corollary 3.8. Let R be an I-semiring. Then T (Γ(R)) contains |Co−Reg(R)|
+1 connected component.

By Theorem 3.7, even if R is an I-semiring, T (Γ(R)) is not connected. Hence
we investigate it’s connected subgraph S(Γ(R)).

Theorem 3.9. Let R be an I-semiring which is not a co-semidomain. The

following statements hold:
(i) S(Γ(R)) is complete if and only if S(R) is a co-ideal of R;
(ii) diam(S(Γ(R))) = 1 if and only if S(R) is a co-ideal of R.

(iii) diam(S(Γ(R))) = 2 if and only if S(R) is not a co-ideal of R.

(iv) |S(R)| = 3 if and only if gr(S(Γ(R))) = ∞.

(v) |S(R)| ≥ 4 if and only if gr(S(Γ(R))) = 3.

Proof. (i) S(Γ(R)) is complete if and only if xy ∈ S(R) for every x, y ∈ S(R),
if and only if S(R) is a co-ideal of R.

(ii) Is clear from (i).
(iii) For any x, y ∈ S(R), there is the path x − 1 − y in S(Γ(R)), hence

diam(S(Γ(R))) = 2 if and only if xy /∈ S(R) for some x, y ∈ S(R) if and only
if S(R) is not a co-ideal of R.

(iv) Let S(R) = {1, a1, a2}. By Lemma 3.6(ii), S(R) is not a co-ideal of R,
hence a1, a2 are not adjacent, so we have the path a1 − 1 − a2, which gives
gr(S(Γ(R))) = ∞.

Conversely, let gr(S(Γ(R))) = ∞. Since R is not a co-semidomain, |S(R)| 6=
1, 2 by Lemma 2.4. We show that |S(R)| = 3. Suppose, on the contrary,
|S(R)| ≥ 4. Since diam(Γ(R)) = 2 or 3 by Theorem 2.3(1), there exist ai, aj ∈
S∗(R) such that d(ai, aj) = 2. Thus there is ak ∈ S∗(R) such that ai− ak − aj
is a path in Γ(R). Hence ai, aj ∈ (1 : ak), which gives aiaj ∈ (1 : ak) ⊆ S(R),
because (1 : ak) is a co-ideal of R by Proposition 2.2(1). So 1 − ai − aj − 1 is
a cycle in S(Γ(R)) and gr(S(Γ(R))) = 3, a contradiction.

(v) Let |S(R)| ≥ 4. We show that there exist at least two elements ai, aj ∈
S∗(R) such that aiaj ∈ S∗(R). Since Γ(R) is not complete and diam(Γ(R)) = 2
or 3 by Theorem 2.3(1), there exist ai, aj ∈ S∗(R) such that d(ai, aj) = 2 in
Γ(R). So there exists ak ∈ S∗(R) such that ai − ak − aj is a path in Γ(R).
Thus ai, aj ∈ (1 : ak), which gives aiaj ∈ (1 : ak) ⊆ S(R), because (1 : ak) is a
co-ideal of R by Proposition 2.2(1). This implies 1 − ai − aj − 1 is a cycle in
S(Γ(R)) and gr(S(Γ(R))) = 3.
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Conversely, let gr(S(Γ(R))) = 3, we show that |S(R)| ≥ 4. By Lemma
2.4, |S(R)| 6= 1, 2. Suppose, on the contrary, S(R) = {1, a1, a2}. Since
gr(S(Γ(R))) = 3, a1 and a2 are adjacent in S(Γ(R)) which gives a1a2 ∈ S(R).
Hence S(R) is a co-ideal of R, which is a contradiction by Lemma 3.6(ii).
Therefore |S(R)| ≥ 4. �

Example 3.10. Let R = (Z+, gcd, lcm). It is clear that S(R) = R \ {0} is a
co-ideal of R and S(Γ(R)) is a complete graph.

Theorem 3.11. Let R be an I-semiring. Then

(i) ω(S(Γ(R))) = max{|Pα| : Pα’s are maximal elements of
∑

in Lemma

3.6(iii)}.
(ii) ω(Γ(R)) ≤ ω(S(Γ(R))).

Proof. (i) Let T be a clique of S(Γ(R)), then F (T ) is a co-ideal of R which
F (T ) ⊆ S(R). Hence there exists a co-ideal P which is maximal in

∑
(
∑

is defined in Lemma 3.6(iii)) such that T ⊆ F (T ) ⊆ P . Since each P in
∑

is a complete subgraph of S(Γ(R)) and T is a maximal complete subgraph of
S(Γ(R)), T = F (T ) = P . Thus the clique of S(Γ(R)) is one of the maximal
co-ideals in

∑
which has maximal number of elements.

(ii) If |min(R)| = 1, then there is nothing to prove. If |min(R)| = 2, then
ω(Γ(R)) = 2 by Theorem 2.3(3). It is clear that ω(S(Γ(R))) ≥ 2, because
S(Γ(R)) is connected by Theorem 3.3. Let T ⊆ S(R) be a clique in Γ(R).
We show that T is a clique in S(Γ(R)). Let x, y ∈ T and |min(R)| ≥ 3. So
ω(Γ(R)) ≥ 3 by Theorem 2.3(3). Hence there exists z ∈ T such that x, y 6= z.
Since T is a clique, y, x ∈ (1 : z) and so xy ∈ (1 : z) ⊆ S(R). Hence xy ∈ S(R),
so T is a clique in S(Γ(R)). �

In general the equality of Theorem 3.11 is not true, as the following example
shows.

Example 3.12. Let R = ({0, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}, gcd, lcm). We
can easily see that ω(Γ(R)) = 3 and ω(S(Γ(R))) = 5.

Theorem 3.13. Let R be an I-semiring. Then S(Γ(R)) is not a cycle graph.

Proof. By the proof of Theorem 3.4, if S(Γ(R)) contains a cycle, then

gr(S(Γ(R))) = 3.

Hence if S(Γ(R)) is a cycle graph, then gr(S(Γ(R))) = 3. So |S(R)| = 3, a
contradiction by Theorem 3.9. �

4. Total graph of semirings without identity element

In this section, we refine our results on diam(S∗(Γ(R))), gr(S∗(Γ(R))) and
the relation between S∗(Γ(R)) and S(Γ(R)). At first we prove one of the most
important properties of S(R) which will be used in the sequel. We prove this
property of S(R) for I-semirings and we show that it maybe not true, when R
is not an I-semiring.
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Let T be a subset of R. We call , the set of elements of R \ T by T c.

Theorem 4.1. Let R be an I-semiring, then S(R) = ∪Pα, where P ,
αs are all

minimal prime co-ideals of R.

Proof. Let Pα ∈ min(R) and x ∈ Pα. Set T = {y + ix : y ∈ P c, i ∈
N ∪ {0}}(Note that 0x = 0). Then T is an additively closed subset of R which
properly contains P c. We show P c is maximal with respect to property not
containing 1. By Zorn’s lemma, there exists maximal additively closed subset
M of R with respect to the property of not containing 1 such that P c ⊆ M . By
Zorn’s lemma there exists a strong co-ideal Q, which is maximal with respect to
the property of not meeting M . We claim Q is prime. Let a+ b ∈ Q and a, b /∈
Q. Therefore Q ⊂ F (Q ∪ {a}) and Q ⊂ F (Q ∪ {b}). Thus F (Q∪ {a})∩ T 6= ∅
and F (Q ∪ {b}) ∩ T 6= ∅. Let x ∈ F (Q ∪ {a}) ∩ T and y ∈ F (Q ∪ {b}) ∩ T .
Then x+ y ∈ F (Q∪{a})∩F (Q∪{b})∩T , because F (Q∪{a}) and F (Q∪{b})
are co-ideals of R and T is an additively closed subset of R . We claim that
F (Q ∪ {a})∩ F (Q ∪ {b}) = Q. Clearly Q ⊆ F (Q ∪ {a}) ∩ F (Q ∪ {b}). For the
reverse inclusion, let z ∈ F (Q∪{a})∩F (Q∪{b}). Then z = r1+c1a

n = r2+c2b
m

for some r1, r2 ∈ R, c1, c2 ∈ Q and n,m ∈ N. Since c1(a+ b)n = c1a
n + bt ∈ Q

for some t ∈ R, z + bt = r1 + c1a
n + bt ∈ Q. Hence bt ∈ (Q : z). By

Proposition 2.3, b ∈ (Q : z). Therefore c2b
m ∈ (Q : z). As (Q : z) is a co-ideal,

z = r2 + c2b
m ∈ (Q : z). Thus z + z ∈ Q, which gives z ∈ Q, since Q is

subtractive. Therefore F (Q ∪ {a}) ∩ F (Q ∪ {b}) = Q. Hence x + y ∈ Q ∩ T
gives a contradiction. Thus a ∈ Q or b ∈ Q, as needed. Since Q ∩ M = ∅,
Q ⊆ M c ⊆ P . Since Q is prime and P ∈ min(R), Q = M c = P . Hence
P c = M is maximal with respect to the property of not containing 1. Thus
1 ∈ T . Hence there exists a positive integer i and y /∈ P such that y + ix = 1.
So x ∈ S(R)(note that ix = x when i 6= 0 because ix = x(1 + · · ·+ 1) = x).

Conversely, let x ∈ S(R), so there exists 1 6= y ∈ S(R) such that x +
y = 1. Since y 6= 1, there exists Pα ∈ min(R) such that y /∈ Pα, because
∩Pα∈min(R)Pα = {1}, by Proposition 2.2(2). Since x+ y = 1 ∈ Pα and y /∈ Pα,
x ∈ Pα. Thus S(R) = ∪Pα∈min(R)Pα. �

In the following example, it is shown that the condition ”R is an I-semiring”
in Theorem 4.1 cannot be omitted.

Example 4.2. Let R = (Z+×Z
+,+, ·). Let I be a co-ideal of R and (a, b) ∈ I.

Then (a+ r, b + s) ∈ I for each (r, s) ∈ R. So each co-ideal of R is infinite. It
can be easily seen that S(R) = {(1, 1), (1, 0), (0, 1)}. So S(R) 6= ∪Pα, where
P ,
αs are all minimal prime co-ideals of R.

Remark 4.3. We can prove easily by using mathematical induction on n: Let
P1, P2, . . . , Pn be subtractive prime co-ideals of a semiring R. If I is a strong
co-ideal of R such that I ⊆ ∪n

i=1Pi, then I ⊆ Pr for some 1 ≤ r ≤ n. This is
useful in the proof of next propositions.
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Theorem 4.4. Let R be an I-semiring which is not co-semidomain. Then

S∗(Γ(R)) is connected if and only if |min(R)| 6= 2. Moreover if S∗(Γ(R)) is

connected, then diam(S∗(Γ(R))) ∈ {1, 2}.

Proof. Let S∗(Γ(R)) be connected. Suppose, on the contrary, min(R) = {P1,
P2}, then S(R) = P1∪P2 by Theorem 4.1. By Proposition 2.2(2), P1∩P2 = {1}.
If 1 6= x ∈ P1 and 1 6= y ∈ P2, then xy /∈ S(R), because if xy ∈ S(R), then
xy ∈ P1 or xy ∈ P2 which implies x ∈ P2 ∩ P1 = {1} or y ∈ P1 ∩ P2 = {1},
by Proposition 2.2(1), a contradiction. So xy /∈ S(R), which implies non of
elements of P1 and P2 are adjacent in S(Γ(R)). So S∗(Γ(R)) is not connected,
a contradiction.

Conversely, suppose that |min(R)| 6= 2. By Lemma 2.4, |min(R)| 6= 1.
Therefore |min(R)| ≥ 3. We show that Pi ∩Pj 6= {1} for each Pi, Pj ∈ min(R).
Let Pi ∩ Pj = {1} for some Pi, Pj ∈ min(R). We show S(R) = Pi ∪ Pj . Let
x ∈ S∗(R)\Pi∪Pj , so there exists y ∈ S∗(R) such that x+y = 1 ∈ Pi∩Pj . Since
x /∈ Pi, Pj , we have y ∈ Pi ∩ Pj = {1}, a contradiction. Thus S(R) ⊆ Pi ∪ Pj ,
hence S(R) = Pi ∪ Pj which implies min(R) = {Pi, Pj}, because if there exists
Pk ∈ min(R) \ {Pi, Pj}, then Pk ⊆ S(R) = Pi ∪ Pj by Theorem 4.1, which
implies Pk ⊆ Pi or Pk ⊆ Pj by Remark 4.3, a contradiction. Thus Pi ∩ Pj 6=
{1} for each minimal prime co-ideals Pi, Pj of R. Now, let x, y ∈ S∗(R). If
xy ∈ S∗(R), then d(x, y) = 1. Let xy /∈ S∗(R), so x ∈ Pi and y ∈ Pj where
Pi, Pj are distinct minimal prime co-ideals of R. Choose 1 6= z ∈ Pi ∩ Pj , then
x− z − y is a path in S∗(Γ(R)) and d(x, y) = 2. �

We now state Theorem 4.5 which shows the relationship between the prime
co-ideals which are contained in S(R) and prime ideals which contain Co −
Reg(R). This theorem help us to characterize the relationship between
diam(Γ(R)), |min(R)| and the connectivity of S∗(Γ(R)) in Proposition 4.6 and
Theorem 4.8.

Theorem 4.5. Let R be an I-semiring and S(R) = ∪i∈ΛPi. Then

(i) Qi = R \ Pi is a prime k-ideal of R for each i ∈ Λ.
(ii) Co−Reg(R) = ∩i∈ΛQi.

Proof. (i) We show that R \ Pi = Qi is a prime ideal of R for each i ∈ Λ. Let
x, y ∈ Qi, if x + y /∈ Qi, then x + y ∈ Pi. Since Pi is a prime co-ideal of R,
x ∈ Pi or y ∈ Pi, a contradiction, so x+ y ∈ Qi for each x, y ∈ Qi. Let r ∈ R
and x ∈ Qi, we show that rx ∈ Qi. Let rx /∈ Qi, hence rx ∈ Pi gives x ∈ Pi by
Proposition 2.2(1), a contradiction. So Qi is an ideal of R. Now, let xy ∈ Qi

and x, y /∈ Qi. So x, y ∈ Pi, which gives xy ∈ Pi, because Pi is a co-ideal of
R, a contradiction. So Qi is a prime ideal of R. Now, we show that Qi is a
k-ideal. Let x, x + y ∈ Qi, we show that y ∈ Qi. If y /∈ Qi, then y ∈ Pi, gives
x+ y ∈ Pi, because Pi is a co-ideal of R, a contradiction. So y ∈ Qi and Qi is
a k-ideal of R.

(ii) Is clear. �
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Proposition 4.6. Let R be an I-semiring with diam(Γ(R)) = 2. Then the

following statements hold:
(i) If there exists an element in S(R) that is contained in the unique minimal

prime co-ideal of R, then |min(R)| = 2.
(ii) If min(R) is a finite set, then |min(R)| = 2.

Proof. Note that since diam(Γ(R)) = 2, |S(R)| ≥ 3, which implies |min(R)| 6= 1
by Lemma 2.4.

(i) Suppose x ∈ P1 such that P1 is the unique minimal prime co-ideal of
R which contains x. Suppose, on the contrary, there are at least two other
minimal prime co-ideals P2, P3. We claim that P2 \ P1 ∪ P3 6= ∅. If not, then
P2 ⊆ P1 ∪P3. Hence by Remark 4.3, P2 ⊆ P1 or P2 ⊆ P3, a contradiction. Let
y ∈ P2 \ P1 ∪ P3. We show xy ∈ Co − Reg(R). Since x /∈ ∪i6=1,Pi∈min(R)Pi,
x ∈ ∩i6=1Qi (Qi = R\Pi is an ideal for each i), which gives xy ∈ ∩i6=1Qi. Since
y /∈ P1, y ∈ Q1, which gives xy ∈ Q1. Thus xy ∈ ∩ΛQi = Co − Reg(R). By
assumption diam(Γ(R)) = 2. If d(x, y) = 1 in Γ(R), then x+ y = 1 ∈ P3 which
gives x ∈ P3 or y ∈ P3, because P3 is a prime co-ideal of R, a contradiction. If
d(x, y) = 2 in Γ(R), then x, y ∈ (1 : r) for some r ∈ S∗(R), which gives xy ∈
(1 : r) ⊆ S(R) by Proposition 2.2(1), a contradiction with xy ∈ Co −Reg(R).
Hence |min(R)| = 2.

(ii) Let min(R) = {P1, P2, . . . , Pn}. By Remark 4.3, P1 6⊆ P2 ∪ · · · ∪ Pn.
Hence there exists an element in S(R) that is contained in a unique minimal
prime co-ideal P1 of R. Thus |min(R)| = 2 by (i). �

The following example shows that in general Proposition 4.6 is not true in
the case diam(Γ(R)) = 3.

Example 4.7. Let R = ({0, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}, gcd, lcm) (take
gcd(0, 0) = 0 and lcm(0, 0) = 0). Then S(R) = P1 ∪ P2 ∪ P3, where P1 =
{1, 2, 4, 5, 10, 20}, P2 = {1, 2, 3, 4, 6, 12} and P3 = {1, 3, 5, 15} are minimal
prime co-ideals of R. As we see diam(Γ(R)) = 3 and P3 is the unique minimal
prime co-ideal of R which contains 15.

Theorem 4.8. Let R be an I-semiring which is not co-semidomain. If R has

only finitely many minimal prime co-ideals, then

(i) diam(Γ(R)) = 2 if and only if S∗(Γ(R)) is not connected and |S∗(R)| ≥ 3.
(ii) diam(Γ(R)) = 3 if and only if S∗(Γ(R)) is connected.

Proof. (i) Let diam(Γ(R)) = 2. So |min(R)| = 2 by Proposition 4.6. Hence
S∗(Γ(R)) is not connected by Theorem 4.4. It is clear that if diam(Γ(R)) = 2
then |S∗(R)| ≥ 3. Conversely, assume that S∗(Γ(R)) is not connected and
|S∗(R)| ≥ 3, so |min(R)| = 2 by Theorem 4.4. Hence Γ(R) is a complete
bipartite graph by Theorem 2.3(2), which at least one of the parts has more
than one vertex. Thus diam(Γ(R)) = 2.

(ii) Let diam(Γ(R)) = 3. So Γ(R) is not complete bipartite. Hence |min(R)|
6= 2 by Theorem 2.3(2) and Proposition 2.2(2). So S∗(Γ(R)) is connected.
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Conversely, assume that diam(Γ(R)) 6= 3. By (i), diam(Γ(R)) 6= 2. Hence
diam(Γ(R)) = 1 and |S∗(R)| = 2 by Theorem 2.3(1). Since S∗(Γ(R)) is con-
nected, S(R) is a co-ideal of R, a contradiction by Lemma 3.6(ii). �

Theorem 4.9. Let R be an I-semiring. Then gr(S∗(Γ(R))) ∈ {3,∞}.

Proof. By Theorem 4.1, S(R) = ∪Pi, where Pi’s are minimal prime co-ideals
of R. If |min(R)| = 1, then there is nothing to prove. So we consider two cases:

Case 1: |min(R)| = 2, then S(R) = P1 ∪ P2. If |P1| ≥ 4 or |P2| ≥ 4, then
gr(S∗(Γ(R))) = 3, because Pi \{1} is a complete subgraph of S∗(Γ(R)) for each
Pi ∈ min(R). If |P1|, |P2| ≤ 3, then there is no cycle in P1 and P2. Also there
is no cycle between the elements of P1 and P2 (because non of elements of P1

and P2 are adjacent by the proof of Theorem 4.4). Hence there is no cycle in
S∗(Γ(R)), so gr(S∗(Γ(R))) = ∞.

Case 2: |min(R)| ≥ 3. At first we show that for each Pi ∈ min(R), |Pi| ≥ 3.
Suppose,on the contrary, there exists Pi ∈ min(R) such that Pi = {1, a}.
By the proof of Theorem 4.4, Pi ∩ Pj 6= {1} for each Pj ∈ min(R), hence
Pi ∩ Pj = {1, a}, which implies Pi ⊆ Pj , a contradiction. So |Pi| ≥ 3 for
any minimal prime co-ideal Pi of R . If |Pi| ≥ 4 for some Pi ∈ min(R),
then gr(S∗(Γ(R))) = 3, because Pi \ {1} is a complete subgraph of S∗(Γ(R)).
Let |Pi| = 3 for each Pi ∈ min(R). Let Pi = {1, x1, x2} ∈ min(R). Since
x1 6= 1, there exists Pj ∈ min(R) such that x1 /∈ Pj (by Proposition 2.2(2),
∩P∈min(R)P = {1}), hence Pi∩Pj = {1, x2}, because Pi∩Pj 6= {1}. Since x2 6=
1, there exists Pj 6= Pk ∈ min(R), such that x2 /∈ Pk, hence Pi ∩ Pk = {1, x1}.
On the other hand, Pk∩Pj 6= {1}, x2 ∈ Pj \Pk and x1 ∈ Pk \Pj , so there exists
1 6= a ∈ S(R) such that a ∈ Pj ∩ Pk. Thus Pj = {1, x1, a} and Pk = {1, x2, a}.
So x1 − a− x2 − x1 is a cycle in S∗(Γ(R)) and gr(S∗(Γ(R))) = 3. �

Theorem 4.10. Let R be an I-semiring which is not a co-semidomain and

S∗(Γ(R)) a complete graph, then min(R) is infinite.

Proof. Since S∗(Γ(R)) is a complete graph, S(R) is a co-ideal of R, hence S(R)
is infinite by Lemma 3.6(ii). We show that min(R) is infinite. Suppose min(R)
is finite, so S(R) = ∪n

i=1Pi, where P ,
i s are minimal prime co-ideals of R by

Theorem 4.1. Since S(R) is a co-ideal of R, S(R) = Pi for some 1 ≤ i ≤ n by
Remark 4.3. So Pi is the only minimal prime co-ideal of R by Theorem 4.1 .
Thus S(R) = Pi = {1} by Proposition 2.2(2), which givesR is a co-semidomain,
a contradiction. �

Theorem 4.11. Let R be an I-semiring which is not co-semidomain. The

following statements hold:
(i) If |min(R)| 6= 2, then diam(S∗(Γ(R))) = diam(S(Γ(R)));
(ii) If |S(R)| 6= 4, 5, then gr(S(Γ(R))) = gr(S∗(Γ(R))).

Proof. (i) If diam(S(Γ(R))) = 1, then S(R) is a co-ideal of R. So aiaj ∈ S∗(R)
for each ai, aj ∈ S∗(R) by Lemma 3.6(i), which implies diam(S∗(Γ(R))) = 1.
Hence diam(S(Γ(R))) = diam(S∗(Γ(R))).
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If diam(S(Γ(R))) = 2, then there exist ai, aj ∈ S∗(R) such that aiaj /∈
S∗(R). By Theorem 4.4, diam(S∗(Γ(R))) ∈ {1, 2}. So there exists ak ∈ S∗(R)
such that ai − ak − aj is a path in S∗(Γ(R)). Hence diam(S∗(Γ(R))) = 2, so
diam(S(Γ(R))) = diam(S∗(Γ(R))).

(ii) By Lemma 2.4, |S(R)| 6= 1, 2. If |S(R)| = 3, then gr(S(Γ(R))) =
∞ by Theorem 3.9. Since |S∗(R)| = 2, S∗(Γ(R)) contains no cycle, hence
gr(S∗(Γ(R))) = ∞. So gr(S(Γ(R))) = gr(S∗(Γ(R))). If |S(R)| ≥ 6, then
gr(S(Γ(R))) = 3 by Theorem 3.9. We show that gr(S∗(Γ(R))) = 3. If |min(R)|
≥ 3, then gr(S∗(Γ(R))) = 3 by the proof of Theorem 4.9. If |min(R)| = 2 and
P1, P2 are two minimal prime co-ideals of R, then at least one of the P ,

i s has
more than 3 vertex, thus gr(S∗(Γ(R))) = 3, because each Pi \{1} is a complete
subgraph of S∗(Γ(R)). Hence gr(S(Γ(R))) = gr(S∗(Γ(R))). �

The following example shows that if |S(R)| = 4 or 5, maybe gr(S(Γ(R))) 6=
gr(S∗(Γ(R))).

Example 4.12. (i) Let R = ({0, 1, 2, 4, 5, 10, 20}, gcd, lcm)(take gcd(0, 0) = 0
and lcm(0, 0) = 0), then S(R) = {1, 2, 4, 5}. We can easily see that gr(S(Γ(R)))
= 3 and gr(S∗(Γ(R))) = ∞.

(ii) Let R = ({0, 1, 2, 3, 4, 6, 9, 12, 18, 36}, gcd, lcm) (take gcd(0, 0) = 0 and
lcm(0, 0) = 0), then S(R) = {1, 2, 3, 4, 9}. As we see gr(S(Γ(R))) = 3 and
gr(S∗(Γ(R))) = ∞.

The following theorem shows the relationship between the girth of Γ(R) and
S∗(Γ(R)).

Theorem 4.13. Let R be an I-semiring which is not a co-semidomain. Then

gr(S∗(Γ(R))) = gr(Γ(R)) if and only if one of the following conditions hold:
(i) |min(R)| 6= 2.
(ii) min(R) = {P1, P2} with |P1|+ |P2| ≤ 5.

Proof. Assume that (i) holds. Since R is not a co-semidomain, |min(R)| 6= 1. So
|min(R)| ≥ 3. Thus ω(Γ(R)) ≥ 3 by Theorem 2.3(3), which implies gr(Γ(R)) =
3. Also gr(S∗(Γ(R))) = 3 by the proof of Theorem 4.9, so gr(S∗(Γ(R))) =
gr(Γ(R)).

Now, assume that (ii) holds. Hence Γ(R) is a complete bipartite graph
with two parts P1 \ {1} and P2 \ {1} by Theorems 2.3(2). By assumption
|P1| = |P2| = 2 or |P1| = 2 and |P2| = 3. So gr(Γ(R)) = ∞ . Also by the proof
of Theorem 4.9, gr(S∗(Γ(R))) = ∞. Thus gr(S∗(Γ(R))) = gr(Γ(R)) = ∞.

Conversely, let gr(Γ(R)) = gr(S∗(Γ(R))). We consider two cases:
Case 1: gr(Γ(R)) = gr(S∗(Γ(R))) = 3. First, we show that |min(R)| 6= 2.

If |min(R)| = 2, then Γ(R) is a complete bipartite graph by Theorem 2.3(2),
hence gr(Γ(R)) = 4 or ∞, a contradiction with gr(Γ(R)) = gr(S(Γ(R))) = 3.
So |min(R)| 6= 2. Hence |min(R)| ≥ 3, because R is not co-semidomain.

Case 2: If gr(Γ(R)) = gr(S∗(Γ(R))) = ∞, then min(R) = {P1, P2} with
|P1|, |P2| ≤ 3 by the proof of Theorem 4.9. Hence Γ(R) is a complete bipartite
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graph with two parts P1 \ {1} and P2 \ {1} by Theorems 2.3(2). We show that
at least one of the P ,

i s has less than 3 element. If both of P1 and P2 have more
than two elements then gr(Γ(R)) = 4 (because Γ(R) is a complete bipartite
graph), which is a contradiction. Thus |min(R)| = 2 and |P1|+ |P2| ≤ 5. �
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