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SPANNING COLUMN RANK 1 SPACES
OF NONNEGATIVE MATRICES

SEOK-ZUN SONG, GI-SANG CHEON AND GWANG-YEON LEE

1. Introduction

There are some papers on structure theorems for the spaces of matri-
ces over certain semirings. Beasley, Gregory and Pullman {1] obtained
characterizations of semiring rank 1 matrices over certain Semirings
of the nonnegative reals. Beasley and Pullman [2] also obtained the
structure theorems of Boolean rank 1 spaces. Since the semiring rank
of a matrix differs from the column rank of it in general, we consider
a structure theorem for semiring rank in [1] in view of column rank.

In this paper, we obtain a characterization of column rank 1 matrices
and a structure theorem for the vector space of matrices whose nonzero
members all have spanning column rank 1 over nonnegative part of a
unique factorization domain that is not a field in the reals.

2. Definitions and preliminaries

Let R denote the field of reals and S derote an arbitrary semiring
of nonnegative reals. Let U, be the nonnegative part of a unique
factorization domain which is not a field in R. Such examples are
Z . .(Q[7])+ etc., where Z, Q denote the rings of integers and rationals,
respectively, and 7 is a transcendental numkber over Q.

Let A be an m x n matrix over S. If A is a nonzero matrix, then
the semiring rank [3] of A,r(A), is the least k for which there exist
m x k and k x n matrices F and G over S such that 4 = FG. The

zero matrix is assigned the semiring rank 0. The set of m x n matrices
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with entries in 8 is denoted by M, ,(S). Addition, multiplication by
scalars, and the product of matrices are defined as if S were a field.

If V is a nonempty subset of S* = My 1(S) that is closed under
addition and multiplication by scalars, then V is called a vector space
over S. The notions of subspace and of spanning sets are the same as if
S were a field. As with fields, a basis for a vector space V is a spanning
subset of least cardinality. That cardinality is the dimension, dim(V),
of V.

For an m x n matrix A over S, the column rank |5],c(A), is the
dimension of the vector space spanned by its columns, and the spanning
column rank [4], sc(A), is the minimum number of the columns of A
which span its column space.

It follows that

(2.1) 0<r(A)<clAd)<sc(A)<n

for all m x n matrices A over S. But these rank functions may differ
over certain semirings as shown in the following example.

EXAMPLE 2.1. Consider a matrix A = [3,6 — 2/7.2V/7 — 4] over
a semiring S = (Z[V7])4. Then it is trivially that r(A) = 1. Since
(6—2VT)+(2V7T—-4)=2, 2is spanned by the last two columns of A.
Then we have (6 — 2v/7) = 2(3 — V/7) and 2v/7 — 4 = 2(\/7 — 2) with
3 -1, V7T — 2 € S, which means that {2,3} is a basis of the column
space of A. So ¢(A) = 2. But, any column of A cannot be spanned by
the other two columns. That is, sc(4) =3. W

Let I' be a nonempty subset of S* and let g € S¥. We'll say that g
is a common factorof I'if T' C {og| o € S}.

LEMMA 2.2, ([1]) Let T be any nonempty subset of (Uy)*. Each
pair of nonzero vectors in I' has a common nonzero scalar multiple in
(U)* if and only if T has a common factor in (U,)*. W

EXAMPLE 2.3. If k > 1, let

> O |
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IfO<k<lletp=[1], ¢g=p—1and

1 1—kqg kp—1
Ak)={1 &k 0
10 k

If k is a nonzero nonunit in S, then ¢(A(k)) = 3 by definition of column
rank. Multiplying the first column of A(k) by & reduces its column rank
to 2. From this matrix A(k) we can obtain an m x n matrix of column
rank r such that the matrix obtained by multiplying the jth column
of it by k has column rank » — 1 as follows : let P be the matrix
obtained from I,, by interchanging I s first and jth column, and let B
be any (m — 3) x (n — 3) matrix over S of column rank r — 3. Then
X = (A ® B)P is the required matrix of column rank r. W

3. Column rank 1 matrix

If X is a matrix over a semiring S and X = xa’, then the vectors
x, a are called left and right factors of X respectively. In particular, a
is called a basic right factor of X if a! has column rank 1.

THEOREM 3.1. For A € M, ,(S),c(A) = 1 if and only if A can be
factored as xa' for some a € S",x € S™, where X # 0 and al is a basic
right factor.

Proof. Suppose that ¢(A) = 1 and denote the columns of A by
aj, - ,a,. Let {x} be a basis of the column space of A over S, so
that x = Z;zl ~;a; for some constants v;,- -+ ,v, in S. In particular,
x € 8™ and x # 0. Now for each j between 1 and n, we have a; = a,;x
for some a; € S, since x spans the column space of A. Letting a’ =
[a1, - ,ap], we have a € S™ and A = xa'. Further, x = E;‘;l yia; =
E;zlyjajx, and hence 1 = 2?:17]”} since X is not zero. Thus 1 is
in the column space of a!, and it follows that ¢(a') = 1. Consequently,
a is a basic right factor of A, as desired.

The converse is clear. W

Identifying S™" with M, »(S), we transfer the definitions to M, ,
(S). If V # {0} is a vector space in M, ,(S) whose members have
column rank at most 1, then V is a column rank 1 space. If Vis a
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vector space all of whose members have the same basic right factor b,
then V is called a basic right factor space. Notice that in that case
W = {a € S™ | ab’ € V} is a vector space in 8. Conversely, if W
is a vector space in S™ and e(b!) = 1 then {ab' | a € W} is a basic
right factor space in M, ,(S). Evidently basic right factor spaces are
column rank 1 spaces.

Define a relation A on the m x n column rank 1 matrices over S by
:AAB if A and B have a common basic right factor.

PROPOSITION 3.2. (1) A is an equivalence relation on the m x n
column rank 1 matrices over U .
(2) For any nonempty set E of m x n column rank 1 matrices over U,
the members of E have a common basic right factor if and only if X \Y

forall XY in E.

Proof. (1) Evidently \ is reflexive and symmetric. Suppose A. B, C
are m x n column rank 1 matrices over Uy that satisfv AAB and BAC.
Then A.B and C can be factored as 4 = xa'.ya' = B = zb' and
C' = wb' by Theorem 3.1, where a’ and b! have column rank 1. Now
a,b have a common nonzero scalar multiple because the left factors of
B are nonzero. Therefore a, b have a common factor f by Lemma 2.2,
and f' has column rank 1. So A and (' can be factored as A = {ax)f"
and C = (gw)f! for some «, 3 € U,. Consequently ANC and hence A
18 transitive.

(2) Suppose X AY for all X.Y in E. For each X in E. select a basic
right factor gy and put T = {gx | X € E}. By the proof of (1), if
A, DB are in E, then 4 and B have a common basic right factor. Thus
g4 and gg have a common nonzero scalar multiple. Therefore I' has a
common factor f by Lemma 2.2, and f* has column rank 1. Thus f 1s
a common basic right factor of all X in E.

The converse is immediate. W

Thus the A-equivalence classes are the maximal basic right factor
spaces in M, ,(U4). These in turn are of the form V(a) = {xa' |
x € U7}, where clal) = 1.

4. Spanning column rank 1 spaces

In this section, we obtain a structure theorem for the vector space
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of matrices whose members have spanning column rank at most 1. For
this purpose we need some definitions and lemmas.

If A is a matrix over a semiring S and A has the form fa', then a
is called a strong right factor of A if a' has spanning column rank 1.
Hwang, Kim and Song [4] showed the following Lemma:

LEMMA 4.1. ([4]) For A € M, n(S),sc(A) =1 if and only if 4 can
be factored as fa' for some a ¢ 8™ and f € 8™, where f # 0 and a' is
a strong right factor. W

If V # {0} is a vector space in M, ,(S) whose members have span-
ning column rank at most 1, then V is called a spanning column rank 1
space. If V' is a vector space all of whose members have the same strong
right factor b, then V is called a strong right factor space. As the case
of basic right factor space, W = {a € 8™ | ab' € V'} is a vector space
in §™. Conversely, if W is a vector space in 8™ and sc(b') = 1 then
{ab' | a €W} is a strong right factor space in My, »(S). Evidently
strong right factor spaces are spanning column rank 1 spaces.

Beasley and Pullman [1] obtained a Lemme for the common factor
of two matrices as follows:

LEMMA 4.2. ([1]) Suppose A and B are m < n matrices of semiring
rank 1 over U, and min(m,n) > 2. Then r(A + B) = 1 if and only if
A and B have a common factor. M

For the common strong right factor of two matrices, we obtain the
following Lemma :

LEMMA 4.3. Suppose A,B € M, o(Uy) with sc(A) = sc(B) =1
and min(m,n) > 2. Then A and B have a common strong right factor
if and only if se(aA + SB) = 1 for any o, 8 € Uy, not both zero.

Proof. By Lemma 4.1, we can write 4 = fa', and B = gb' for
some f,g €(U4)™ and a,b €(U, )™ with sc(a’) = sc(b') = 1. Assune
that A and B have a common strong right factor r. Then, for any
a.f € Up,ad + 3B = (acf + 37g)r! for some 0,7 € U,. Since
se(r') = se(or') = sc(a’) = 1,sc(ad + 3B) = 1 for any a, 3, not both
zero.

Conversely, assume that sc{aA + §B) = 1 for any «, 3 € U, not
both zero. Then we have r(a4 + 3B) = 1 by (2.1). In particular. 4
and B have a common factor by Lemma 4.2.
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Case 1) A and B have a common right factor r. Then we can write
A+ B = (of + 7g)r' for some 0,7 € U,. Since se(r') = se(or!) =
sc(a’) =1, A and B have a common strong right factor r.

Case 2) A and B have a common left factor d. Then we may
write A = daa' and B = dgb’, where aa = (a,--- .a,)!, and
Bb = (by,--- ,b,)" are strong right factors of A and B, respectively.
Since there are infinitely many primes in U, (for the existence of infi-
nite primes, see Lemma 2.2 in [4]), we can choose a prime 7 such that
7 does not divide all nonzero b;,7 = 1.--- ,n. Consider

A+ B =d[r"a; + by, 7Pag + by, - - - ymPan + by

which has spanning column rank 1 for any positive integer p. Since the
columns of 77 4 + B are finite in number, there exists a column jand a
sequence of p’s with the properties that i) the jth columns of 7? A + B
spans the column space for each term p in the sequence, and ii) the
difference between two successive terms in the sequence is at most 7.
Therefore for infinitely many p,

(41) 7rpak+bk:,upk(7r”a]‘+bj)

for some ppr € Uypok = 1,--- ,n. In (4.1), if b; = 0, then by must
be divided by nonunit 7. But it is impossible since 7 does not divide
by for at least one nonzero by. Thus b; # 0. If the column space of
79A + B is spanned by its jth column, then we get

(4.2) mlay + by = pgr(mla; +b;)

for some pgr € Uy k = 1,--- n. From (4.1) and (4.2), we get |
Kek — ppk |€ Uy for ¢ > p. Since there are only n columns in 77 A + B
for each p, we can choose infinitely many pairs p and ¢ such that they
satisfy p < ¢ < p+ n and the column spaces of 774 + B and 794 + B
are spanned by their jth column respectively. For such pairs p and gq.
consider

_ mlay + by wPay + by
[ gk = pp | = Inqaj+l)j h mPa; + b;

_ l(‘qu_p — 1)(akbj-a]'bk)|7r”

(m%a; +bj)(7Pa; +b;

(4.3)
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Assume that p.x # ppk for all such pairs p and ¢. Since 7 is prime,
7 is not divided by nPa; + b;. If 7Pa; + b; has 7 as its prime factor,
then 7Pa; + b; = 7 for some 3 € Uy. Thus n(3 — 7P 'a;) = b; and
hence b; is divided by 7, which is a contradiction. Then 7?7 does not
have any factor of (nPaj + b;)(n%; + b;). Since | arb; — a;b; | is fixed
and | 7977 — 1 | takes at most n values for any pairs p and ¢ with
1 < ¢ —p < n, the prime factors of | (797P — 1)(axb; —a;jbi) | are finite
in number. Thus we can choose sufficiently large pair p and ¢ with
1 < ¢ —p < nsuch that | (x¢7? — 1)(axb; — a;bx) | does not contain
some prime factors of (7Pa; +b;)(7%a; +b;). Then the denominator of
(4.3) contains some nonunit prime factors such that the numerator of
(4.3) does not contain. Since U, contains no element of the form %,
where y has a prime factor which = does not. the fractional expression
of (4.3) is not an element of U;. Thus we have a contradiction such
that | mgx — 7% |¢ Uy for some pair p and ¢ with p < ¢ < p+ n.
Hence pqx = ppi for some p and ¢q. Subtracting (4.1) from (4.2), we
have ay = ppraj for all k = 1,---,n. And we get by = ppib; for
all k = 1,---,n from (4.1). That is, a = a;r and b = b;r where
r=(fip1, ", Mpn] With pp; = 1.

By cases 1) and 2), A and B have a common strong right factor
r R

Define a relation p on the m x n spanning column rank 1 matrices
over a semiring S by : ApB if A, B have a coinmon strong right factor.
Then we have some properties on the relation p that are similar to
those on the relation A in section 3.

PROPOSITION 4.4.

(1) p is an equivalence relation on the m x n spanning column rank
1 matrices over U.

(2) For any nonempty set F' of m X n spanning column rank 1
matrices over U,, the members of F have a common strong right
factor if and only if X pY for all X,Y in F.

Proof. Similar to the proof of Proposition 3.2. W

Thus the p-equivalence classes are the maximal strong right factor
spaces in M,, ,(U,). These in turn are of the form V(a) = {xa' |
x €(U4)™}, where a' has spanning column rank 1.
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THEOREM 4.5. Suppose that V is a subspace of M 2(Us) with
min(m,n) > 2. Then V is a spanning column rank 1 space if and only
if V is a strong right factor space.

Proof. Suppose V is a spanning column rank 1 space. For every A
and B in V.sc(aA + SB) =1 for any a, 3 € U, not both zero. Then
A and B have a common strong right factor by Lemma 4.3. Therefore
V' is a strong right factor space by Proposition 4.4.

The converse is immediate. W

Thus we have a structure theorem for spanning colunn rank 1 space

mn Mm' n(U+)-
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