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ON SPANNING COLUMN RANK
OF MATRICES OVER SEMIRINGS

SEOK-ZUN SONG

A semiring is a binary system (S, +, x ) such that (S, +) is an Abelian
monoid (identity0),(S,z) is a monoid (identity 1), x distributes over
+,0xs=5x0=0forall sin S, and 1 # 0. Usually S denotes the
system and x is denoted by juxtaposition. If (S. x) is Abelian, then S is
commutative. Thus all rings are semirings. Some examples of semirings
which occur in combinatorics are Boolean algebra of subsets of a finite
set (with addition being union and multiplication being intersection)
and the nonnegative integers (with usual arithmetic). The concepts of
matrix theory are defined over a semiring as over a field. Recently a
number of authors have studied various problems of semiring matrix
theory. In particular, Minc [4] has written an encyclopedic work on
nonnegative matrices.

In this note, we will have an equivalent definition of column rank
of matrices over the nonnegative integers or binary Boolean algebra.
We call it "spanning column rank”, which enables us to calculate the
column rank of matrices easily. We also point out that an example in
[2] for column rank is wrong and we give a correct example. For our
purpose, we will introduce some definitions and notations.

Let S denote a semiring and M,, . (S) denote the set of m x n
matrices with entries in S. If V' is a nonempty subset of M,, ; (S) that
is closed under addition and multiplication by scalars, then V is called
a vector space over S. As with fields, a basis for a vector space V is a
spanning subset of least cardinality. That cardinality is the dimension,

dim(V), of V.
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We'll use the notation < U > to denote the subspace spanned by
the subset U of a vector space.

The column rank, ¢(A), of a nonzero m x n matrix A over S is the
dimension of the vector space < A > spanned by its columns.

The spanning column rank, sc(A), is the minimum number of the
columns of A which span the vector space < A >. The zero matrix is
assigned column rank and spanning column rank 0 respectively.

It follows that

(1) 0<c(d)<sc(Ad)<n

for all m x n matrices A over S.

The spanning column rank may actually exceed its column rank
over some semirings. For example, let S = (Z[v/7))*, the semiring of
nonnegative elements of Z[\/f ], where Z is the ring of integers. Consider
a1lx2 matrix 4 = [S—ﬁ, \/7——‘2] over S. Since (3 — \/’7)+(ﬁ—2) =
1,{1} is a spanning set of the column space of A. So ¢(4) = 1. But
sc(A) = 2 since 3 — VT # a(V/T7—2) and Vi—2%# a3~ V7) for any
ain S.

For each z € S, let &, its pattern, be 1 if v # 0 and 0 otherwise. If
A € My, o(S), define A4, the pattern of A, to be [ a;;], the m x n matrix
of patterns of the entries of A.

A set U of vectors over S is linearly dependent if for some a € U, a
can be spanned by the set U —{a}. Otherwise U is lincarly independent.

Thus, for a nonzero matrix 4 € M., 2(S), se(A} is the minimum
number of linearly independent columns of A which generate the vector
space < A >. Hence we have:

LEMMA 1. If the columns of A € M, ,(S) are linearly independent,
then sc(A)=n.

In the followings, Z* denotes the semiring of nonnegative integers
and B the binary Boolean algebra. For a,b €S, if a = b+ 2 for some
xr € S we write a > b. The relation > is extendable entrywise to vectors
and matrices.

LEMMA 2. Let a semiring S be Z* or B. Suppose U and V' are
nonempty sets of vectors in S™(= M, 1(S)), and U is linearly inde-
pendent. Then < U >=< V > implies that for all a € U, there exists

338



On spanning column rank of matrices over semirings

b € V and there exist nonzero scalars o and [ such that a > 3b and
b > aa.

Proof. Since S™ is finite dimensional and U is linearly independent,
we may write U = {a;,... ,a,} and V = {by.... ,b,} withno a; = 0.
Let k£ <p. Since < U >=< V >, we have

q P
ap = Z ﬁ,‘bz‘ and b,‘ = Z ;a5

=1 Jj=!

for some scalars 8; and a,; in S. Since

ak—‘zﬂl Zal_)aj ZB Gk ak+z 2301])3]

i=1 J#k =1

and U is linearly independent, we have > Bia;x # 0. So for some h, we
have Brank 7é 0. Thus a; > 3, by, and by, > apray.

THEOREM 3. Let a semiring S be Z* or B. Then the column rank
and the spanning column rank of an arbitrary matrix A € My o(S) are
the same.

Proof. Assume that c(A) = k and sc(4)=r. Let U = { a;, ,
a;(;)} be a minimum set of linearly independent columns of A which
spans the vector space < 4 >. Let V' = {x1,... ,x;} be a basis for the
vector space < A >. That is, the elements of V' are spanned by the
columns of A. Then < U >=< V' >. Thus Lemma 2 implies that for
all a;(;y € U, there exists x, € V" and there exist nonzero scalars o and
B such that a;¢j; > #x; and x; > «a,;). That is, a;(;) > paa,;) and
hence fa < 1. Then a = 3 = 1 and hence a;;;; = x; for some x;, €V.
Thus the spanning column rank » is not greater than the column rank

k. By (1), we have r=k.
In [2], Beasley and Pullman gave a wrong example as follows;

EXAMPLE 4. ( [2], Example 3.2.1 ) Let S = Z%, and 4 = [2,3,5,7,
11,... ,pn] where pn is the nth prime integer in S. Then ¢(A) = n. But
c(A) =1, where A is the pattern matrix of A.
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Now we assert that the column rank of A in Example 4 is not n but
(2) c(A) =2.

For, let p be an arbitrary prime integer larger than 3. Then p — 3 is
an even integer in S. So p — 3 is spanned by 2 over S. Therefore p can
be spanned by both 2 and 3 over S. Since {2,3} is the minimum set of
linearly independent columns of A which spans the vector space < 4 >,
we have sc(A) = 2. Hence ¢(A4) = 2 by Theorem 3.

Now we give a correct example as follows;

EXAMPLE 5. Let S = Z* and n be any integer in S. Consider

B=n+1n+2,... .20

Then the set of all the columns of B is linearly independent over S
and is the minimum set which spans the vector space < B >. Thus
s¢(B) = n and hence ¢(B) = n by Theorem 3. But it is trivial that
¢(B) = 1, where B is the pattern matrix of B.

PROPOSITION G. For A in My, o(Z7), the spanning column rank of
A is no less than that of its pattern matrix A.

Proof. Suppose sc(A)=k. Then there exist k linearly independent
columns a;(1), ... ,a,) of A which span all the columns of A. Since Z*
has no zero divisors and no negative elements, we have a + 3 = a + 3
and af = ap for any a,3 € Z*. For an arbitrary column a; of A, we
have a; = ZL] Braip for some By, € Z*. Then &a; = Z§=1 Bri(n)-
Thus the set {a;n) | ¢ = 1,... .k} of columns of A can span all the

columns of A . That is, se(A) < k. It implies that sc(A) > sc( A).

The Example 5 shows that the column rank of a matrix can be
greater strictly than that of its pattern matrix. But it is not the case
for the matrices over general semirings. Here we give an interesting
example.

EXAMPLE 7. For n > 2, let B,, be the finite nonbinary Boolean
algebra of subsets of an n-element set S, = {a;,as,...,a,}. Union
is denoted by +, and intersection by juxtaposition. 0 denotes the null
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set and 1 the set S,. Let oy = {a1},02 = {a2},... ;00 = {an} be
the singleton subsets of S,,. Define p; = 014 024+ ...+ 0; and ¢; =
On+0pn_1+...+0,4_(-1 for 1 <2,7 <n—1 Then all o;,p; and ¢,
are elements of B,,. Consider an upper triangular matrix

(1 g2 q3 e Gn—1 1 7
0 GaPn—1 g3Pn—1 cor Gn-1Pn-1 Pn-1
0 0 43Pr=2 -« Gu-1Pn-2 Pn-—2
D = . .
0
: : : qn-1p2 P2
0 0 0 .. 0 ]

over B,. Then each % x &k principal submatrix Py of D has spanning
column rank 1 since the column that contains most nonzero entries
among the columns of Pj can span all the colunins of it over B,. But its
pattern matrix Py has spanning column rank k since each columns of it
are linearly independent over binary Boolean algebra. Then ¢(Py) = k
by Theorem 3.

Now, consider another matrix E=diag(a,,02.... ,0,) over B,,.

Then sc( E) = n since all the columns of E are linearly independent
over B,,. But ¢(E) = 1 since a vector x which is the sum of all coluinns
of E constitutes a spauning set of the vector space < E > over B,.
This shows that the spanning column rank of a matrix over B, may be
different to the column rank of it. Moreover the pattern matrix E of
E is the identity matrix of order n, so we have s¢(E) = n = ¢(E) by
Lemma 1 and Theorem 3.

Thus the column rank or spauning column rank of the pattern matrix
of a matrix may or may not be greater than tliose of the given matrix.
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