• Title/Summary/Keyword: ($P,P^t$)-operator

검색결과 150건 처리시간 0.024초

SKEW-ADJOINT INTERPOLATION ON Ax-y IN $ALG\mathcal{L}$

  • Jo, Young-Soo;Kang, Joo-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권1호
    • /
    • pp.29-36
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. In this paper the following is proved: Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$, be the projection onto sp(x). If $P_xE=EP_x$ for each $ E \in \cal{L}$ then the following are equivalent. (1) There exists an operator A in Alg(equation omitted) such that Ax=y, Af = 0 for all f in ($sp(x)^\perp$) and $A=-A^\ast$. (2) (equation omitted)

  • PDF

BOOLEAN RANK INEQUALITIES AND THEIR EXTREME PRESERVERS

  • Song, Seok-Zun;Kang, Mun-Hwan
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1525-1532
    • /
    • 2011
  • The $m{\times}n$ Boolean matrix A is said to be of Boolean rank r if there exist $m{\times}r$ Boolean matrix B and $r{\times}n$ Boolean matrix C such that A = BC and r is the smallest positive integer that such a factorization exists. We consider the the sets of matrix ordered pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices over nonbinary Boolean algebra. We characterize linear operators that preserve these sets of matrix ordered pairs as the form of $T(X)=PXP^T$ with some permutation matrix P.

LINEAR PRESERVERS OF SYMMETRIC ARCTIC RANK OVER THE BINARY BOOLEAN SEMIRING

  • Beasley, LeRoy B.;Song, Seok-Zun
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1317-1329
    • /
    • 2017
  • A Boolean rank one matrix can be factored as $\text{uv}^t$ for vectors u and v of appropriate orders. The perimeter of this Boolean rank one matrix is the number of nonzero entries in u plus the number of nonzero entries in v. A Boolean matrix of Boolean rank k is the sum of k Boolean rank one matrices, a rank one decomposition. The perimeter of a Boolean matrix A of Boolean rank k is the minimum over all Boolean rank one decompositions of A of the sums of perimeters of the Boolean rank one matrices. The arctic rank of a Boolean matrix is one half the perimeter. In this article we characterize the linear operators that preserve the symmetric arctic rank of symmetric Boolean matrices.

STRONG PRESERVERS OF SYMMETRIC ARCTIC RANK OF NONNEGATIVE REAL MATRICES

  • Beasley, LeRoy B.;Encinas, Luis Hernandez;Song, Seok-Zun
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1503-1514
    • /
    • 2019
  • A rank 1 matrix has a factorization as $uv^t$ for vectors u and v of some orders. The arctic rank of a rank 1 matrix is the half number of nonzero entries in u and v. A matrix of rank k can be expressed as the sum of k rank 1 matrices, a rank 1 decomposition. The arctic rank of a matrix A of rank k is the minimum of the sums of arctic ranks of the rank 1 matrices over all rank 1 decomposition of A. In this paper we obtain characterizations of the linear operators that strongly preserve the symmetric arctic ranks of symmetric matrices over nonnegative reals.

ON THE MARTINGALE EXTENSION OF LIMITING DIFFUSION IN POPULATION GENETICS

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • 제22권1호
    • /
    • pp.29-36
    • /
    • 2014
  • The limiting diffusion of special diploid model can be defined as a discrete generator for the rescaled Markov chain. Choi([2]) defined the operator of projection $S_t$ on limiting diffusion and new measure $dQ=S_tdP$. and showed the martingale property on this operator and measure. Let $P_{\rho}$ be the unique solution of the martingale problem for $\mathcal{L}_0$ starting at ${\rho}$ and ${\pi}_1,{\pi}_2,{\cdots},{\pi}_n$ the projection of $E^n$ on $x_1,x_2,{\cdots},x_n$. In this note we define $$dQ_{\rho}=S_tdP_{\rho}$$ and show that $Q_{\rho}$ solves the martingale problem for $\mathcal{L}_{\pi}$ starting at ${\rho}$.

NOTE ON THE OPERATOR ${\hat{P}}$ ON Lp(∂D)

  • Choi, Ki Seong
    • 충청수학회지
    • /
    • 제21권2호
    • /
    • pp.269-278
    • /
    • 2008
  • Let ${\partial}D$ be the boundary of the open unit disk D in the complex plane and $L^p({\partial}D)$ the class of all complex, Lebesgue measurable function f for which $\{\frac{1}{2\pi}{\int}_{-\pi}^{\pi}{\mid}f(\theta){\mid}^pd\theta\}^{1/p}<{\infty}$. Let P be the orthogonal projection from $L^p({\partial}D)$ onto ${\cap}_{n<0}$ ker $a_n$. For $f{\in}L^1({\partial}D)$, ${\hat{f}}(z)=\frac{1}{2\pi}{\int}_{-\pi}^{\pi}P_r(t-\theta)f(\theta)d{\theta}$ is the harmonic extension of f. Let ${\hat{P}}$ be the composition of P with the harmonic extension. In this paper, we will show that if $1, then ${\hat{P}}:L^p({\partial}D){\rightarrow}H^p(D)$ is bounded. In particular, we will show that ${\hat{P}}$ is unbounded on $L^{\infty}({\partial}D)$.

  • PDF

REGULARITY AND MULTIPLICITY OF SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES

  • Alotaibi, Sarah Rsheed Mohamed;Saoudi, Kamel
    • 대한수학회지
    • /
    • 제57권3호
    • /
    • pp.747-775
    • /
    • 2020
  • In this work we investigate the nonlocal elliptic equation with critical Hardy-Sobolev exponents as follows, $$(P)\;\{(-{\Delta}_p)^su={\lambda}{\mid}u{\mid}^{q-2}u+{\frac{{\mid}u{\mid}^{p{^*_s}(t)-2}u}{{\mid}x{\mid}^t}}{\hspace{10}}in\;{\Omega},\\u=0{\hspace{217}}in\;{\mathbb{R}}^N{\backslash}{\Omega},$$ where Ω ⊂ ℝN is an open bounded domain with Lipschitz boundary, 0 < s < 1, λ > 0 is a parameter, 0 < t < sp < N, 1 < q < p < ps where $p^*_s={\frac{N_p}{N-sp}}$, $p^*_s(t)={\frac{p(N-t)}{N-sp}}$, are the fractional critical Sobolev and Hardy-Sobolev exponents respectively. The fractional p-laplacian (-∆p)su with s ∈ (0, 1) is the nonlinear nonlocal operator defined on smooth functions by $\displaystyle(-{\Delta}_p)^su(x)=2{\lim_{{\epsilon}{\searrow}0}}\int{_{{\mathbb{R}}^N{\backslash}{B_{\epsilon}}}}\;\frac{{\mid}u(x)-u(y){\mid}^{p-2}(u(x)-u(y))}{{\mid}x-y{\mid}^{N+ps}}dy$, x ∈ ℝN. The main goal of this work is to show how the usual variational methods and some analysis techniques can be extended to deal with nonlocal problems involving Sobolev and Hardy nonlinearities. We also prove that for some α ∈ (0, 1), the weak solution to the problem (P) is in C1,α(${\bar{\Omega}}$).

ON QUASI-CLASS A OPERATORS

  • Kim, In Hyoun;Duggal, B.P.;Jeon, In Ho
    • Korean Journal of Mathematics
    • /
    • 제19권2호
    • /
    • pp.205-209
    • /
    • 2011
  • Let $\mathcal{QA}$ denote the class of bounded linear Hilbert space operators T which satisfy the operator inequality $T^*|T^2|T{\geq}T^*|T|^2T$. Let $f$ be an analytic function defined on an open neighbourhood $\mathcal{U}$ of ${\sigma}(T)$ such that $f$ is non-constant on the connected components of $\mathcal{U}$. We generalize a theorem of Sheth [10] to $f(T){\in}\mathcal{QA}$.

MORE PROPERTIES OF WEIGHTED BEREZIN TRANSFORM IN THE UNIT BALL OF ℂn

  • Lee, Jaesung
    • Korean Journal of Mathematics
    • /
    • 제30권3호
    • /
    • pp.459-465
    • /
    • 2022
  • We exhibit various properties of the weighted Berezin operator Tα and its iteration Tkα on Lp(𝜏), where α > -1 and 𝜏 is the invariant measure on the complex unit ball Bn. Iterations of Tα on L1R(𝜏) the space of radial integrable functions have performed important roles in proving 𝓜-harmonicity of bounded functions with invariant mean value property. We show differences between the case of 1 < p < ∞ and p = 1, ∞ under the infinite iteration of Tα or the infinite summation of iterations, most of which are extensions or related assertions to the propositions of the previous results.

UPPER TRIANGULAR OPERATORS WITH SVEP

  • Duggal, Bhagwati Prashad
    • 대한수학회지
    • /
    • 제47권2호
    • /
    • pp.235-246
    • /
    • 2010
  • A Banach space operator A $\in$ B(X) is polaroid if the isolated points of the spectrum of A are poles of the resolvent of A; A is hereditarily polaroid, A $\in$ ($\mathcal{H}\mathcal{P}$), if every part of A is polaroid. Let $X^n\;=\;\oplus^n_{t=i}X_i$, where $X_i$ are Banach spaces, and let A denote the class of upper triangular operators A = $(A_{ij})_{1{\leq}i,j{\leq}n$, $A_{ij}\;{\in}\;B(X_j,X_i)$ and $A_{ij}$ = 0 for i > j. We prove that operators A $\in$ A such that $A_{ii}$ for all $1{\leq}i{\leq}n$, and $A^*$ have the single-valued extension property have spectral properties remarkably close to those of Jordan operators of order n and n-normal operators. Operators A $\in$ A such that $A_{ii}$ $\in$ ($\mathcal{H}\mathcal{P}$) for all $1{\leq}i{\leq}n$ are polaroid and have SVEP; hence they satisfy Weyl's theorem. Furthermore, A+R satisfies Browder's theorem for all upper triangular operators R, such that $\oplus^n_{i=1}R_{ii}$ is a Riesz operator, which commutes with A.