JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **21**, No. 2, June 2008

NOTE ON THE OPERATOR \widehat{P} ON $L^p(\partial D)$

KI SEONG CHOI*

ABSTRACT. Let ∂D be the boundary of the open unit disk D in the complex plane and $L^p(\partial D)$ the class of all complex, Lebesgue measurable function f for which $\{\frac{1}{2\pi}\int_{-\pi}^{\pi}|f(\theta)|^pd\theta\}^{1/p} < \infty$. Let P be the orthogonal projection from $L^p(\partial D)$ onto $\bigcap_{n<0} \ker a_n$. For $f \in L^1(\partial D)$, $\hat{f}(z) = \frac{1}{2\pi}\int_{-\pi}^{\pi} P_r(t-\theta)f(\theta)d\theta$ is the harmonic extension of f. Let \hat{P} be the composition of P with the harmonic extension. In this paper, we will show that if 1 , then $<math>\hat{P}: L^p(\partial D) \to H^p(D)$ is bounded. In particular, we will show that \hat{P} is unbounded on $L^{\infty}(\partial D)$.

1. Introduction

Let D be the open unit disk in the complex plane and ∂D the boundary of the open unit disk D. Let $d\theta$ be the arc-length measure on ∂D . We define $L^p(\partial D)$, for $1 \leq p < \infty$, to be the class of all complex, Lebesgue measurable, 2π periodic functions on R for which the norm

$$\parallel f \parallel_p = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\theta)|^p d\theta\right]^{1/p}$$

is finite.

The function

$$P_r(\theta) = \sum_{-\infty}^{\infty} r^{|n|} e^{in\theta} \ (0 \le r < 1, \ \theta \ real)$$

is called the Poisson kernel. If $z = re^{it}$, we can easily show that

Received May 01, 2008; Accepted May 21, 2008.

²⁰⁰⁰ Mathematics Subject Classification: Primary 32H25, 32E25; Secondary 30C40.

Key words and phrases: Poisson kernel, Poisson integral, harmonic extension.

This paper was supported by the Konyang University Research Fund, in 2007.

$$P_r(t-\theta) = Re \frac{e^{i\theta} + z}{e^{i\theta} - z} = \frac{1-r^2}{1-2r\cos(t-\theta) + r^2}.$$

If $f \in L^1(\partial D)$ and

$$\hat{f}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t-\theta) f(\theta) d\theta,$$

then the function \hat{f} so defined in D is called the Poisson integral of f. It follows that $\hat{f}(z)$ is harmonic in D for every $f \in L^1(\partial D)$ (See Theorem 11.8).

For any $f \in L^1(\partial D)$, we define the Fourier coefficients of f by the formula

$$a_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta \ (n \in Z)$$

where Z is the set of all integers. The Fourier series of f is

$$\sum_{-\infty}^{\infty} a_n(f) e^{in\theta}.$$

It is easy to prove that $a_n(f) \to 0$ as $n \to \infty$ for every $f \in L^1(\partial D)$. Since $L^2(\partial D) \subset L^1(\partial D)$, $a_n(f)$ can be applied to every $f \in L^2(\partial D)$. The Riesz-Fischer theorem asserts that if $\{c_n\}$ is a sequence of complex numbers such that

$$\sum_{-\infty}^{\infty} |c_n|^2 < \infty,$$

then there exists an $f \in L^2(\partial D)$ such that

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta \ (n \in Z)$$

Since a_n is bounded linear functional on $L^p(\partial D)$ for any fixed n,

$$\bigcap_{n<0} \ker a_n = \bigcap_{n<0} \{ f \in L^p(\partial D) : a_n(f) = 0 \}$$

is a closed subspace of $L^p(\partial D)$ and hence a Banach space.

Let $p \geq 1$. Since $\bigcap_{n<0} \ker a_n$ is a closed subspace of $L^p(\partial D)$, there exists an orthogonal projection from $L^p(\partial D)$ onto $\bigcap_{n<0} \ker a_n$. We shall denote this projection by P.

If $a_n(f)$ are the Fourier coefficients of f, then

The operator \widehat{P} on $L^p(\partial D)$

$$\hat{f}(z) = \sum_{n=0}^{\infty} a_n(f) z^n + \sum_{n=1}^{\infty} a_{-n}(f) \overline{z}^n.$$

This implies that if $f \in \bigcap_{n < 0} \ker a_n$, then $\hat{f}(z)$ is analytic in D. Let the function f_r on ∂D , associated to f in D be given by

$$f_r(e^{i\theta}) = f(re^{i\theta}) \ (0 \le r < 1)$$

We set

$$\| f_r \|_p = \left[\int_{-\pi}^{\pi} |f_r(\theta)|^p d\theta \right]^{1/p} \quad (0
$$\| f_r \|_{\infty} = \sup_{\theta} |f(re^{i\theta})|.$$$$

Let $H^p(D)$ be the space of analytic functions on D which are harmonic extensions of functions in $\bigcap_{n<0} \ker a_n$ such that

 $|| f ||_p = \sup\{|| f_r ||_p: 0 \le r < 1\} < \infty.$

Let \widehat{P} be the composition of P with the harmonic extension, that is, $\widehat{P}f = \widehat{Pf}$ for all $f \in L^p(\partial D)$. In section II, we will show that if $1 , then <math>\widehat{P} : L^p(\partial D) \to H^p(D)$ is bounded. In particular, we will show that \widehat{P} is unbounded on $L^{\infty}(\partial D)$ in Section III.

2. Bounded operator \widehat{P} on $L^p(\partial D)$, $1 \le p < \infty$

THEOREM 2.1. If $f \in L^1(\partial D)$, then

$$\lim_{r \to 1} \hat{f}(re^{i\theta}) = f(e^{i\theta}) \ a.e \ \theta.$$

Proof. See Corollay of Theorem 11.2 in [10].

THEOREM 2.2. If $1 \leq p \leq \infty$ and $f \in L^p(\partial D)$, then

$$\|f_r\|_p \le \|f\|_p$$

where $0 \le r < 1$. If $1 \le p < \infty$, then

$$\lim_{r \to 1} \parallel \hat{f}_r - f \parallel_p = 0.$$

Proof. See Theorem 3.3.4 in [10].

LEMMA 2.3. If $f, g \in L^p(\partial D)$ and $\hat{f} = \hat{g}$, then f = g a.e. *Proof.* Since $f \in L^p(\partial D)$ and $g \in L^p(\partial D)$,

$$\lim_{r \to 1} \parallel \hat{f}_r - f \parallel_p = 0$$

and

$$\lim_{r \to 1} \| \hat{g}_r - g \|_p = 0.$$

Since

$$\| f - g \|_{p} = \| f - \hat{f}_{r} + \hat{f}_{r} - \hat{g}_{r} + \hat{g}_{r} - g \|_{p}$$

$$\leq \| f - \hat{f}_{r} \|_{p} + \| \hat{f}_{r} - \hat{g}_{r} \|_{p} + \| \hat{g}_{r} - g \|_{p}$$

$$= \| f - \hat{f}_{r} \|_{p} + \| \hat{g}_{r} - g \|_{p},$$

$$\| f - g \|_{p} = \frac{1}{2\pi} \int_{0}^{2\pi} |f(\theta) - g(\theta)|^{p} d\theta = 0.$$

This implies that $f = g \ a.e.$

THEOREM 2.4. To each p such that $1 , there corresponds a constant <math>A_p$ such that the inequality

$||v||_p \leq A_p ||u||_p$

holds for every real harmonic function u in D if v is harmonic conjugate of u.

Proof. See Theorem 17.26 in [12].

THEOREM 2.5. If $1 , then <math>\widehat{P} : L^p(\partial D) \to H^p(D)$ is bounded.

Proof. Since $\cap_{n<0} \ker a_n$ is a closed subspace of $L^p(\partial D)$ and $f \in L^p(\partial D)$, there exist $g \in \cap_{n<0} \ker a_n$ and $h \in (\cap_{n<0} \ker a_n)^{\perp}$ such that f = g + h. $\hat{g}(z)$ is analytic and $\hat{g}(z) \in H^p(D)$. Put

$$g(e^{i\theta}) = U(e^{i\theta}) + iV(e^{i\theta})$$

and

$$\hat{g}(z) = u(z) + iv(z).$$

By Theorem 2.1,

$$\lim_{r \to 1} \hat{g}(re^{i\theta}) = \lim_{r \to 1} \widehat{Pf}(re^{i\theta}) = Pf(e^{i\theta}) = g(e^{i\theta}),$$

$$\lim_{r \to 1} u(re^{i\theta}) = U(e^{i\theta}).$$

By Theorem 2.2,

$$\lim_{r \to 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} |\hat{g}(re^{i\theta})|^p d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} |g(e^{i\theta})|^p d\theta.$$

This implies that

$$\lim_{r \to 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} |u(re^{i\theta})|^p d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} |U(e^{i\theta})|^p d\theta.$$

By Theorem 2.4, there is a constant c_p such that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |g(re^{i\theta})|^p d\theta \le c_p \frac{1}{2\pi} \int_{-\pi}^{\pi} |u(re^{i\theta})|^p d\theta.$$

This implies that

$$\sup_{0 < r < 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} |g(re^{i\theta})|^p d\theta$$

$$\leq c_p \sup_{0 < r < 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} |u(re^{i\theta})|^p d\theta$$

$$\leq c_p \frac{1}{2\pi} \int_{-\pi}^{\pi} |U(e^{i\theta})|^p d\theta$$

since $\frac{1}{2\pi} \int_{-\pi}^{\pi} |u(re^{i\theta})|^p d\theta$ is monotonically increasing function of r in [0,1] (See Theorem 17.6 in [11]). This implies that $\widehat{Pf} \in H^p(D)$ for $f \in L^p(\partial D)$. Also,

$$\begin{split} &\sup_{0 < r < 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} |\widehat{Pf}(re^{i\theta})|^p d\theta \\ &= \lim_{r \to 1} \frac{1}{2\pi} \int_{-\pi}^{\pi} |\widehat{g}(re^{i\theta})|^p d\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} |g(e^{i\theta})|^p d\theta \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(e^{i\theta})|^p d\theta. \end{split}$$

This implies that $\widehat{P}: L^p(\partial D) \to H^p(D)$ is bounded if $1 . <math>\Box$

3. Unbounded operator \widehat{P} on $L^{\infty}(D)$

THEOREM 3.1. $\widehat{Pf}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(\theta)}{1-ze^{-i\theta}} d\theta.$

Proof. Note that $\{e^{in\theta} : n \in N\}$ is an orthonormal basis for $L^2(\partial D)$ and $\{z^n : n \in N_0\}$ forms an orthonormal basis for $H^2(D)$. If $f \in L^2(\partial D)$ and $z \in D$, then

$$\begin{split} \widehat{Pf}(z) &= \sum_{n=0}^{+\infty} \langle \widehat{Pf}, z^n \rangle z^n \\ &= \sum_{n=0}^{+\infty} \langle Pf, e^{in\theta} \rangle z^n \\ &= \sum_{n=0}^{+\infty} \langle f, e^{in\theta} \rangle z^n \\ &= \frac{1}{2\pi} \sum_{n=0}^{+\infty} z^n \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta. \end{split}$$

The above integral formula for \widehat{P} also extends the domain of \widehat{P} to $L^1(\partial D)$.

THEOREM 3.2. If the sequence a_n is monotone decreasing with

$$\lim_{n \to \infty} a_n = 0$$

and the partial sums of $\sum b_n$ are bounded, then $\sum a_n b_n$ converges

Proof. See Theorem 3.4.2 in [9].

LEMMA 3.3.

$$\sum_{k=1}^{n} \sin kx = \frac{\cos(x/2) - \cos(n+1/2)x}{2\sin(x/2)}$$

for all x with $\sin(x/2) \neq 0$.

Proof. Since

$$2\sin A\sin B = \cos(B-A) - \cos(B+A),$$

The operator \widehat{P} on $L^p(\partial D)$

$$\sin(x/2) \sum_{k=1}^{n} \sin kx$$

= $\sin(x/2) \sin x + \sin(x/2) \sin 2x + \dots + \sin(x/2) \sin nx$
= $(\cos(x/2) - \cos(3x/2)) + (\cos(3x/2) - \cos(5x/2)) +$
 $\dots + (\cos(n-1/2)x - \cos(n+1/2)x)$
= $\cos(x/2) - \cos(n+1/2)x$.

COROLLARY 3.4. $\sum_{n=1}^{\infty} \frac{\sin n\theta}{n}$ converges for every θ . In particular, the series converges uniformly for $a \leq x \leq \pi$, provided a > 0.

Proof. It is now clear that partial sums of $\sum_{n=1}^{\infty} \sin n\theta$ are bounded by $1/|\sin(\theta/2)|$ by Lemma 3.3. By Theorem 3.2, $\sum_{n=1}^{\infty} \frac{\sin n\theta}{n}$ converges for all θ except possibly those for which $\sin(\theta/2) = 0$. However, these are the values $x = 0, \pm 2\pi, \cdots$ and the series is clearly convergent for these also.

If a > 0 and $a \le |x| \le \pi$, then

$$\left|\frac{\cos(x/2) - \cos n(n+1/2)x}{2\sin(x/2)}\right| \le \frac{1}{\sin(a/2)}$$

for all n.

THEOREM 3.5. If a periodic function f(x) with period 2π is piecewise continuous in the interval $-\pi \leq x \leq \pi$ and has a left-hand derivative and right-hand derivative at each point of that interval, then the Fourier series of f(x) is convergent. Its sum is f(x), except at a point x_0 at which f(x) is discontinuous.

Proof. See Theorem 1(p575) in [7]. THEOREM 3.6. $f(\theta) = \sum_{n=1}^{\infty} \frac{\sin n\theta}{n}$ is in $L^{\infty}(\partial D)$. Proof. Let

$$F(x) = \begin{cases} \frac{\pi}{2} - \frac{x}{2} - \frac{x^2}{4\pi} & \text{if } -\pi \le x \le 0, \\ \frac{\pi}{2} + \frac{x}{2} - \frac{x^2}{4\pi} & \text{if } 0 \le x \le \pi, \end{cases}$$

and let F be repeated periodically outside this interval. The resulting function F(x) is continuous for all x and is piecewise smooth. It's Fourier series is

$$\frac{2\pi}{3} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}.$$

By Theorem 3.5, a series in the above converges uniformly to F(x). By Corollary 3.4,

$$F'(x) = \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{n}$$

for $-\pi \le x \le \pi$, except for x = 0. Also, F(x) is the periodic function of period 2π such that F(0) = 0and

$$F(x) = \begin{cases} -\frac{1}{2} - \frac{x}{2\pi} & if - \pi \le x < 0, \\ \frac{1}{2} - \frac{x}{2\pi} & if 0 \le x \le \pi. \end{cases}$$

Above two result implies that

$$F(x) = \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{n}.$$

We have now proved that $f(\theta) = \sum_{n=1}^{\infty} \frac{\sin n\theta}{n}$ is in $L^{\infty}(\partial D)$. THEOREM 3.7. If $f(\theta) = \sum_{n=1}^{\infty} \frac{\sin n\theta}{n}$, then $\widehat{Pf}(z) = \frac{1}{2i} \sum_{n=1}^{\infty} \frac{z^n}{n}$.

Proof.

$$\widehat{Pf}(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(\theta)}{1 - ze^{-i\theta}} d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=1}^\infty \frac{\sin n\theta}{n} \frac{1}{1 - ze^{-i\theta}} d\theta$$
$$= \sum_{n=1}^\infty \frac{1}{n} \frac{1}{2\pi} \int_0^{2\pi} \frac{\sin n\theta}{1 - ze^{-i\theta}} d\theta$$
$$= \sum_{n=1}^\infty \frac{1}{n} \frac{1}{2\pi} \int_0^{2\pi} \sin n\theta \sum_{m=0}^\infty (ze^{-i\theta})^m d\theta$$
$$= \sum_{n=1}^\infty \sum_{m=0}^\infty \frac{1}{n} \frac{1}{2\pi} z^m \int_0^{2\pi} \sin n\theta \{\cos m\theta - i\sin m\theta\} d\theta.$$

This implies that

$$\widehat{Pf}(z) = \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{2\pi} z^n \int_0^{2\pi} \sin m\theta \cos n\theta d\theta$$
$$= \sum_{n=1}^{\infty} \frac{1}{2i} \frac{z^n}{n}$$
$$= \frac{1}{2i} \sum_{n=1}^{\infty} \frac{z^n}{n}.$$

THEOREM 3.8. \widehat{P} is unbounded in $L^{\infty}(\partial D)$. Proof. By Theorem 3.6,

$$f(\theta) = \sum_{n=1}^{\infty} \frac{\sin n\theta}{n}$$

in in $L^{\infty}(\partial D)$. Also

$$\widehat{Pf}(z) = \frac{1}{2i} \sum_{n=1}^{\infty} \frac{z^n}{n}$$

by Theorem 3.7. If z is a real number, Pf is not in $H^{\infty}(D)$.

References

- C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbols calculus, Amer. J. Math. 110 (1988), 921-953
- [2] D. Bekolle, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350
- [3] K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces \mathfrak{B}_q , J. Korean Math. Soc. **39** (2002), 277-287
- [4] P. L. Druen, Theory of H^p spaces, Academic Press, New York, 1970.
- [5] K. T. Hahn and K. S. Choi, Weighted Bloch spaces in Cⁿ, J. Korean Math. Soc. 35 (1998), 171-189.
- [6] S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth & Brooks/Cole Math. Series, Pacific Grove, CA.
- [7] E. Kreyszig, Advanced Engineering Mathematics, John wiley & sons, INC. 1993.
- [8] M. Reed and B. Simon, Function analysis, Academic press, New York 1980.
- [9] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill Publishing Co, 1964.
- [10] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer Verlag, New York 1980.
- [11] W. Rudin, Real and Complex Analysis, McGraw-Hill Publishing Co, 1982.
- [12] K. H. Zhu, Operator theory in function spaces, Marcel Dekker, New York 1990.

277

278 *

> Department of Information Security Konyang University Nonsan 320-711, Republic Korea *E-mail*: ksc@konyang.ac.kr