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NOTE ON THE OPERATOR P̂ ON Lp(∂D)

Ki Seong Choi*

Abstract. Let ∂D be the boundary of the open unit disk D in
the complex plane and Lp(∂D) the class of all complex, Lebesgue

measurable function f for which { 1
2π

∫ π

−π
|f(θ)|pdθ}1/p < ∞. Let

P be the orthogonal projection from Lp(∂D) onto ∩n<0 ker an. For

f ∈ L1(∂D), f̂(z) = 1
2π

∫ π

−π
Pr(t − θ)f(θ)dθ is the harmonic ex-

tension of f . Let P̂ be the composition of P with the harmonic
extension. In this paper, we will show that if 1 < p < ∞, then

P̂ : Lp(∂D) → Hp(D) is bounded. In particular, we will show that

P̂ is unbounded on L∞(∂D).

1. Introduction

Let D be the open unit disk in the complex plane and ∂D the bound-
ary of the open unit disk D. Let dθ be the arc-length measure on ∂D.
We define Lp(∂D), for 1 ≤ p < ∞, to be the class of all complex,
Lebesgue measurable, 2π periodic functions on R for which the norm

‖ f ‖p=
[

1
2π

∫ π

−π
|f(θ)|pdθ

]1/p

is finite.
The function

Pr(θ) =
∞∑
−∞

r|n|einθ (0 ≤ r < 1, θ real)

is called the Poisson kernel. If z = reit, we can easily show that
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Pr(t− θ) = Re
eiθ + z

eiθ − z
=

1− r2

1− 2r cos(t− θ) + r2
.

If f ∈ L1(∂D) and

f̂(z) =
1
2π

∫ π

−π
Pr(t− θ)f(θ)dθ,

then the function f̂ so defined in D is called the Poisson integral of f . It
follows that f̂(z) is harmonic in D for every f ∈ L1(∂D) (See Theorem
11.8).

For any f ∈ L1(∂D), we define the Fourier coefficients of f by the
formula

an(f) =
1
2π

∫ π

−π
f(θ)e−inθdθ (n ∈ Z)

where Z is the set of all integers. The Fourier series of f is

∞∑
−∞

an(f)einθ.

It is easy to prove that an(f) → 0 as n → ∞ for every f ∈ L1(∂D).
Since L2(∂D) ⊂ L1(∂D), an(f) can be applied to every f ∈ L2(∂D).
The Riesz-Fischer theorem asserts that if {cn} is a sequence of complex
numbers such that

∞∑
−∞

|cn|2 < ∞,

then there exists an f ∈ L2(∂D) such that

cn =
1
2π

∫ π

−π
f(θ)e−inθdθ (n ∈ Z).

Since an is bounded linear functional on Lp(∂D) for any fixed n,

∩n<0 ker an = ∩n<0{f ∈ Lp(∂D) : an(f) = 0}
is a closed subspace of Lp(∂D) and hence a Banach space.

Let p ≥ 1. Since ∩n<0 ker an is a closed subspace of Lp(∂D), there
exists an orthogonal projection from Lp(∂D) onto ∩n<0 ker an. We shall
denote this projection by P .

If an(f) are the Fourier coefficients of f , then
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f̂(z) =
∞∑

n=0

an(f)zn +
∞∑

n=1

a−n(f)zn.

This implies that if f ∈ ∩n<0 ker an, then f̂(z) is analytic in D.
Let the function fr on ∂D, associated to f in D be given by

fr(eiθ) = f(reiθ) (0 ≤ r < 1).
We set

‖ fr ‖p=
[∫ π

−π
|fr(θ)|pdθ

]1/p

(0 < p < ∞),

‖ fr ‖∞= sup
θ
|f(reiθ)|.

Let Hp(D) be the space of analytic functions on D which are har-
monic extensions of functions in ∩n<0 ker an such that

‖ f ‖p= sup{‖ fr ‖p: 0 ≤ r < 1} < ∞.

Let P̂ be the composition of P with the harmonic extension, that
is, P̂ f = P̂ f for all f ∈ Lp(∂D). In section II, we will show that if
1 < p < ∞, then P̂ : Lp(∂D) → Hp(D) is bounded. In particular, we
will show that P̂ is unbounded on L∞(∂D) in Section III.

2. Bounded operator P̂ on Lp(∂D), 1 ≤ p < ∞

Theorem 2.1. If f ∈ L1(∂D), then

lim
r→1

f̂(reiθ) = f(eiθ) a.e θ.

Proof. See Corollay of Theorem 11.2 in [10].

Theorem 2.2. If 1 ≤ p ≤ ∞ and f ∈ Lp(∂D), then

‖ f̂r ‖p ≤ ‖ f ‖p

where 0 ≤ r < 1. If 1 ≤ p < ∞, then

lim
r→1

‖ f̂r − f ‖p= 0.

Proof. See Theorem 3.3.4 in [10].
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Lemma 2.3. If f, g ∈ Lp(∂D) and f̂ = ĝ, then f = g a.e.

Proof. Since f ∈ Lp(∂D) and g ∈ Lp(∂D),

lim
r→1

‖ f̂r − f ‖p= 0,

and

lim
r→1

‖ ĝr − g ‖p = 0.

Since

‖ f − g ‖p =‖ f − f̂r + f̂r − ĝr + ĝr − g ‖p

≤‖ f − f̂r ‖p + ‖ f̂r − ĝr ‖p + ‖ ĝr − g ‖p

=‖ f − f̂r ‖p + ‖ ĝr − g ‖p,

‖ f − g ‖p=
1
2π

∫ 2π

0
|f(θ)− g(θ)|pdθ = 0.

This implies that f = g a.e.

Theorem 2.4. To each p such that 1 < p < ∞, there corresponds a
constant Ap such that the inequality

‖ v ‖p ≤ Ap ‖ u ‖p

holds for every real harmonic function u in D if v is harmonic conjugate
of u.

Proof. See Theorem 17.26 in [12].

Theorem 2.5. If 1 < p < ∞, then P̂ : Lp(∂D) → Hp(D) is bounded.

Proof. Since ∩n<0 ker an is a closed subspace of Lp(∂D) and f ∈
Lp(∂D), there exist g ∈ ∩n<0 ker an and h ∈ (∩n<0 ker an)⊥ such that
f = g + h. ĝ(z) is analytic and ĝ(z) ∈ Hp(D). Put

g(eiθ) = U(eiθ) + iV (eiθ)
and

ĝ(z) = u(z) + iv(z).
By Theorem 2.1,

lim
r→1

ĝ(reiθ) = lim
r→1

P̂ f(reiθ) = Pf(eiθ) = g(eiθ),
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lim
r→1

u(reiθ) = U(eiθ).

By Theorem 2.2,

lim
r→1

1
2π

∫ π

−π
|ĝ(reiθ)|pdθ =

1
2π

∫ π

−π
|g(eiθ)|pdθ.

This implies that

lim
r→1

1
2π

∫ π

−π
|u(reiθ)|pdθ =

1
2π

∫ π

−π
|U(eiθ)|pdθ.

By Theorem 2.4, there is a constant cp such that

1
2π

∫ π

−π
|g(reiθ)|pdθ ≤ cp

1
2π

∫ π

−π
|u(reiθ)|pdθ.

This implies that

sup
0<r<1

1
2π

∫ π

−π
|g(reiθ)|pdθ

≤ cp sup
0<r<1

1
2π

∫ π

−π
|u(reiθ)|pdθ

≤ cp
1
2π

∫ π

−π
|U(eiθ)|pdθ

since 1
2π

∫ π
−π |u(reiθ)|pdθ is monotonically increasing function of r in

[0, 1](See Theorem 17.6 in [11]). This implies that P̂ f ∈ Hp(D) for
f ∈ Lp(∂D). Also,

sup
0<r<1

1
2π

∫ π

−π
|P̂ f(reiθ)|pdθ

= lim
r→1

1
2π

∫ π

−π
|ĝ(reiθ)|pdθ

=
1
2π

∫ π

−π
|g(eiθ)|pdθ

≤ 1
2π

∫ π

−π
|f(eiθ)|pdθ.

This implies that P̂ : Lp(∂D) → Hp(D) is bounded if 1 < p < ∞.
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3. Unbounded operator P̂ on L∞(D)

Theorem 3.1. P̂ f(z) = 1
2π

∫ π
−π

f(θ)
1−ze−iθ dθ.

Proof. Note that {einθ : n ∈ N} is an orthonormal basis for L2(∂D)
and {zn : n ∈ N0} forms an orthonormal basis for H2(D). If f ∈ L2(∂D)
and z ∈ D, then

P̂ f(z) =
+∞∑
n=0

〈P̂ f , zn〉zn

=
+∞∑
n=0

〈Pf, einθ〉zn

=
+∞∑
n=0

〈f, einθ〉zn

=
1
2π

+∞∑
n=0

zn

∫ π

−π
f(θ)e−inθdθ.

The above integral formula for P̂ also extends the domain of P̂ to
L1(∂D).

Theorem 3.2. If the sequence an is monotone decreasing with

lim
n→∞

an = 0

and the partial sums of
∑

bn are bounded, then
∑

anbn converges

Proof. See Theorem 3.4.2 in [9].

Lemma 3.3.
n∑

k=1

sin kx =
cos(x/2)− cos(n + 1/2)x

2 sin(x/2)

for all x with sin(x/2) 6= 0.

Proof. Since

2 sinA sinB = cos(B −A)− cos(B + A),
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sin(x/2)
n∑

k=1

sin kx

= sin(x/2) sinx + sin(x/2) sin 2x + · · ·+ sin(x/2) sinnx

= (cos(x/2)− cos(3x/2)) + (cos(3x/2)− cos(5x/2))+

· · ·+ (cos(n− 1/2)x− cos(n + 1/2)x)

= cos(x/2)− cos(n + 1/2)x.

Corollary 3.4.
∑∞

n=1
sin nθ

n converges for every θ. In particular, the
series converges uniformly for a ≤ x ≤ π, provided a > 0.

Proof. It is now clear that partial sums of
∑∞

n=1 sinnθ are bounded
by 1/| sin(θ/2)| by Lemma 3.3. By Theorem 3.2,

∑∞
n=1

sin nθ
n converges

for all θ except possibly those for which sin(θ/2) = 0. However, these
are the values x = 0,±2π, · · · and the series is clearly convergent for
these also.

If a > 0 and a ≤ |x| ≤ π, then∣∣∣∣cos(x/2)− cos n(n + 1/2)x
2 sin(x/2)

∣∣∣∣ ≤ 1
sin(a/2)

for all n.

Theorem 3.5. If a periodic function f(x) with period 2π is piecewise
continuous in the interval −π ≤ x ≤ π and has a left-hand derivative
and right-hand derivative at each point of that interval, then the Fourier
series of f(x) is convergent. Its sum is f(x), except at a point x0 at which
f(x) is discontinuous.

Proof. See Theorem 1(p575) in [7].

Theorem 3.6. f(θ) =
∑∞

n=1
sin nθ

n is in L∞(∂D).

Proof. Let

F (x) =


π

2
− x

2
− x2

4π
if − π ≤ x ≤ 0,

π

2
+

x

2
− x2

4π
if 0 ≤ x ≤ π,

and let F be repeated periodically outside this interval. The resulting
function F (x) is continuous for all x and is piecewise smooth. It’s Fourier
series is
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2π

3
− 1

π

∞∑
n=1

cos nx

n2
.

By Theorem 3.5, a series in the above converges uniformly to F (x). By
Corollary 3.4,

F ′(x) =
1
π

∞∑
n=1

sin nx

n

for −π ≤ x ≤ π, except for x = 0.
Also, F (x) is the periodic function of period 2π such that F (0) = 0

and

F (x) =


−1

2
− x

2π
if − π ≤ x < 0,

1
2
− x

2π
if0 ≤ x ≤ π.

Above two result implies that

F (x) =
1
π

∞∑
n=1

sinnx

n
.

We have now proved that f(θ) =
∑∞

n=1
sin nθ

n is in L∞(∂D).

Theorem 3.7. If f(θ) =
∑∞

n=1
sin nθ

n , then P̂ f(z) = 1
2i

∑∞
n=1

zn

n .

Proof.

P̂ f(z) =
1
2π

∫ 2π

0

f(θ)
1− ze−iθ

dθ

=
1
2π

∫ 2π

0

∞∑
n=1

sinnθ

n

1
1− ze−iθ

dθ

=
∞∑

n=1

1
n

1
2π

∫ 2π

0

sinnθ

1− ze−iθ
dθ

=
∞∑

n=1

1
n

1
2π

∫ 2π

0
sinnθ

∞∑
m=0

(ze−iθ)mdθ

=
∞∑

n=1

∞∑
m=0

1
n

1
2π

zm

∫ 2π

0
sinnθ{cos mθ − i sinmθ}dθ.

This implies that
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P̂ f(z) =
∞∑

n=1

1
n

1
2π

zn

∫ 2π

0
sinmθ cos nθdθ

=
∞∑

n=1

1
2i

zn

n

=
1
2i

∞∑
n=1

zn

n
.

Theorem 3.8. P̂ is unbounded in L∞(∂D).

Proof. By Theorem 3.6,

f(θ) =
∞∑

n=1

sinnθ

n

in in L∞(∂D). Also

P̂ f(z) =
1
2i

∞∑
n=1

zn

n

by Theorem 3.7. If z is a real number, P̂ f is not in H∞(D).
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