NOTE ON THE OPERATOR \widehat{P} ON $L^{p}(\partial D)$

Ki Seong Choi*

Abstract

Let ∂D be the boundary of the open unit disk D in the complex plane and $L^{p}(\partial D)$ the class of all complex, Lebesgue measurable function f for which $\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\theta)|^{p} d \theta\right\}^{1 / p}<\infty$. Let P be the orthogonal projection from $L^{p}(\partial D)$ onto $\cap_{n<0}$ ker a_{n}. For $f \in L^{1}(\partial D), \hat{f}(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(t-\theta) f(\theta) d \theta$ is the harmonic extension of f. Let \widehat{P} be the composition of P with the harmonic extension. In this paper, we will show that if $1<p<\infty$, then $\widehat{P}: L^{p}(\partial D) \rightarrow H^{p}(D)$ is bounded. In particular, we will show that \widehat{P} is unbounded on $L^{\infty}(\partial D)$.

1. Introduction

Let D be the open unit disk in the complex plane and ∂D the boundary of the open unit disk D. Let $d \theta$ be the arc-length measure on ∂D. We define $L^{p}(\partial D)$, for $1 \leq p<\infty$, to be the class of all complex, Lebesgue measurable, 2π periodic functions on R for which the norm

$$
\|f\|_{p}=\left[\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\theta)|^{p} d \theta\right]^{1 / p}
$$

is finite.
The function

$$
P_{r}(\theta)=\sum_{-\infty}^{\infty} r^{|n|} e^{i n \theta}(0 \leq r<1, \theta \text { real })
$$

is called the Poisson kernel. If $z=r e^{i t}$, we can easily show that

Received May 01, 2008; Accepted May 21, 2008.
2000 Mathematics Subject Classification: Primary 32H25, 32E25; Secondary 30C40.

Key words and phrases: Poisson kernel, Poisson integral, harmonic extension.
This paper was supported by the Konyang University Research Fund, in 2007.

$$
P_{r}(t-\theta)=\operatorname{Re} \frac{e^{i \theta}+z}{e^{i \theta}-z}=\frac{1-r^{2}}{1-2 r \cos (t-\theta)+r^{2}} .
$$

If $f \in L^{1}(\partial D)$ and

$$
\hat{f}(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(t-\theta) f(\theta) d \theta,
$$

then the function \hat{f} so defined in D is called the Poisson integral of f. It follows that $\hat{f}(z)$ is harmonic in D for every $f \in L^{1}(\partial D)$ (See Theorem 11.8).

For any $f \in L^{1}(\partial D)$, we define the Fourier coefficients of f by the formula

$$
a_{n}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i n \theta} d \theta(n \in Z)
$$

where Z is the set of all integers. The Fourier series of f is

$$
\sum_{-\infty}^{\infty} a_{n}(f) e^{i n \theta}
$$

It is easy to prove that $a_{n}(f) \rightarrow 0$ as $n \rightarrow \infty$ for every $f \in L^{1}(\partial D)$. Since $L^{2}(\partial D) \subset L^{1}(\partial D), a_{n}(f)$ can be applied to every $f \in L^{2}(\partial D)$. The Riesz-Fischer theorem asserts that if $\left\{c_{n}\right\}$ is a sequence of complex numbers such that

$$
\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2}<\infty,
$$

then there exists an $f \in L^{2}(\partial D)$ such that

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i n \theta} d \theta(n \in Z) .
$$

Since a_{n} is bounded linear functional on $L^{p}(\partial D)$ for any fixed n,

$$
\cap_{n<0} \operatorname{ker} a_{n}=\cap_{n<0}\left\{f \in L^{p}(\partial D): a_{n}(f)=0\right\}
$$

is a closed subspace of $L^{p}(\partial D)$ and hence a Banach space.
Let $p \geq 1$. Since $\cap_{n<0} \operatorname{ker} a_{n}$ is a closed subspace of $L^{p}(\partial D)$, there exists an orthogonal projection from $L^{p}(\partial D)$ onto $\cap_{n<0} \operatorname{ker} a_{n}$. We shall denote this projection by P.

If $a_{n}(f)$ are the Fourier coefficients of f, then

$$
\hat{f}(z)=\sum_{n=0}^{\infty} a_{n}(f) z^{n}+\sum_{n=1}^{\infty} a_{-n}(f) \bar{z}^{n} .
$$

This implies that if $f \in \cap_{n<0} \operatorname{ker} a_{n}$, then $\hat{f}(z)$ is analytic in D.
Let the function f_{r} on ∂D, associated to f in D be given by

$$
f_{r}\left(e^{i \theta}\right)=f\left(r e^{i \theta}\right)(0 \leq r<1) .
$$

We set

$$
\begin{aligned}
\left\|f_{r}\right\|_{p}= & {\left[\int_{-\pi}^{\pi}\left|f_{r}(\theta)\right|^{p} d \theta\right]^{1 / p}(0<p<\infty), } \\
& \left\|f_{r}\right\|_{\infty}=\sup _{\theta}\left|f\left(r e^{i \theta}\right)\right| .
\end{aligned}
$$

Let $H^{p}(D)$ be the space of analytic functions on D which are harmonic extensions of functions in $\cap_{n<0} \operatorname{ker} a_{n}$ such that

$$
\|f\|_{p}=\sup \left\{\left\|f_{r}\right\|_{p}: 0 \leq r<1\right\}<\infty .
$$

Let \widehat{P} be the composition of P with the harmonic extension, that is, $\widehat{P} f=\widehat{P f}$ for all $f \in L^{p}(\partial D)$. In section II, we will show that if $1<p<\infty$, then $\widehat{P}: L^{p}(\partial D) \rightarrow H^{p}(D)$ is bounded. In particular, we will show that \widehat{P} is unbounded on $L^{\infty}(\partial D)$ in Section III.
2. Bounded operator \widehat{P} on $L^{p}(\partial D), 1 \leq p<\infty$

Theorem 2.1. If $f \in L^{1}(\partial D)$, then

$$
\lim _{r \rightarrow 1} \hat{f}\left(r e^{i \theta}\right)=f\left(e^{i \theta}\right) \text { a.e } \theta \text {. }
$$

Proof. See Corollay of Theorem 11.2 in [10].
Theorem 2.2. If $1 \leq p \leq \infty$ and $f \in L^{p}(\partial D)$, then

$$
\left\|\hat{f}_{r}\right\|_{p} \leq\|f\|_{p}
$$

where $0 \leq r<1$. If $1 \leq p<\infty$, then

$$
\lim _{r \rightarrow 1}\left\|\hat{f}_{r}-f\right\|_{p}=0
$$

Proof. See Theorem 3.3.4 in [10].

Lemma 2.3. If $f, g \in L^{p}(\partial D)$ and $\hat{f}=\hat{g}$, then $f=g$ a.e.
Proof. Since $f \in L^{p}(\partial D)$ and $g \in L^{p}(\partial D)$,

$$
\lim _{r \rightarrow 1}\left\|\hat{f}_{r}-f\right\|_{p}=0
$$

and

$$
\lim _{r \rightarrow 1}\left\|\hat{g}_{r}-g\right\|_{p}=0 .
$$

Since

$$
\begin{aligned}
&\|f-g\|_{p}=\left\|f-\hat{f}_{r}+\hat{f}_{r}-\hat{g}_{r}+\hat{g}_{r}-g\right\|_{p} \\
& \leq\left\|f-\hat{f}_{r}\right\|_{p}+\left\|\hat{f}_{r}-\hat{g}_{r}\right\|_{p}+\left\|\hat{g}_{r}-g\right\|_{p} \\
&=\left\|f-\hat{f}_{r}\right\|_{p}+\left\|\hat{g}_{r}-g\right\|_{p}, \\
&\|f-g\|_{p}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(\theta)-g(\theta)|^{p} d \theta=0 .
\end{aligned}
$$

This implies that $f=g$ a.e.
Theorem 2.4. To each p such that $1<p<\infty$, there corresponds a constant A_{p} such that the inequality

$$
\|v\|_{p} \leq A_{p}\|u\|_{p}
$$

holds for every real harmonic function u in D if v is harmonic conjugate of u.

Proof. See Theorem 17.26 in [12].
Theorem 2.5. If $1<p<\infty$, then $\widehat{P}: L^{p}(\partial D) \rightarrow H^{p}(D)$ is bounded.
Proof. Since $\cap_{n<0}$ ker a_{n} is a closed subspace of $L^{p}(\partial D)$ and $f \in$ $L^{p}(\partial D)$, there exist $g \in \cap_{n<0} \operatorname{ker} a_{n}$ and $h \in\left(\cap_{n<0} \operatorname{ker} a_{n}\right)^{\perp}$ such that $f=g+h . \hat{g}(z)$ is analytic and $\hat{g}(z) \in H^{p}(D)$. Put

$$
g\left(e^{i \theta}\right)=U\left(e^{i \theta}\right)+i V\left(e^{i \theta}\right)
$$

and

$$
\hat{g}(z)=u(z)+i v(z) .
$$

By Theorem 2.1,

$$
\lim _{r \rightarrow 1} \hat{g}\left(r e^{i \theta}\right)=\lim _{r \rightarrow 1} \widehat{P f}\left(r e^{i \theta}\right)=P f\left(e^{i \theta}\right)=g\left(e^{i \theta}\right),
$$

$$
\lim _{r \rightarrow 1} u\left(r e^{i \theta}\right)=U\left(e^{i \theta}\right)
$$

By Theorem 2.2,

$$
\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\hat{g}\left(r e^{i \theta}\right)\right|^{p} d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|g\left(e^{i \theta}\right)\right|^{p} d \theta
$$

This implies that

$$
\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|u\left(r e^{i \theta}\right)\right|^{p} d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|U\left(e^{i \theta}\right)\right|^{p} d \theta
$$

By Theorem 2.4, there is a constant c_{p} such that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|g\left(r e^{i \theta}\right)\right|^{p} d \theta \leq c_{p} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|u\left(r e^{i \theta}\right)\right|^{p} d \theta
$$

This implies that

$$
\begin{aligned}
& \sup _{0<r<1} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|g\left(r e^{i \theta}\right)\right|^{p} d \theta \\
& \leq c_{p} \sup _{0<r<1} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|u\left(r e^{i \theta}\right)\right|^{p} d \theta \\
& \leq c_{p} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|U\left(e^{i \theta}\right)\right|^{p} d \theta
\end{aligned}
$$

since $\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|u\left(r e^{i \theta}\right)\right|^{p} d \theta$ is monotonically increasing function of r in $[0,1]$ (See Theorem 17.6 in [11]). This implies that $\widehat{P f} \in H^{p}(D)$ for $f \in L^{p}(\partial D)$. Also,

$$
\begin{aligned}
& \sup _{0<r<1} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\widehat{P f}\left(r e^{i \theta}\right)\right|^{p} d \theta \\
& =\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\hat{g}\left(r e^{i \theta}\right)\right|^{p} d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|g\left(e^{i \theta}\right)\right|^{p} d \theta \\
& \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta
\end{aligned}
$$

This implies that $\widehat{P}: L^{p}(\partial D) \rightarrow H^{p}(D)$ is bounded if $1<p<\infty$.

3. Unbounded operator \widehat{P} on $L^{\infty}(D)$

Theorem 3.1. $\widehat{P f}(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{f(\theta)}{1-z e^{-i \theta}} d \theta$.
Proof. Note that $\left\{e^{i n \theta}: n \in N\right\}$ is an orthonormal basis for $L^{2}(\partial D)$ and $\left\{z^{n}: n \in N_{0}\right\}$ forms an orthonormal basis for $H^{2}(D)$. If $f \in L^{2}(\partial D)$ and $z \in D$, then

$$
\begin{aligned}
\widehat{P f}(z) & =\sum_{n=0}^{+\infty}\left\langle\widehat{P f}, z^{n}\right\rangle z^{n} \\
& =\sum_{n=0}^{+\infty}\left\langle P f, e^{i n \theta}\right\rangle z^{n} \\
& =\sum_{n=0}^{+\infty}\left\langle f, e^{i n \theta}\right\rangle z^{n} \\
& =\frac{1}{2 \pi} \sum_{n=0}^{+\infty} z^{n} \int_{-\pi}^{\pi} f(\theta) e^{-i n \theta} d \theta
\end{aligned}
$$

The above integral formula for \widehat{P} also extends the domain of \widehat{P} to $L^{1}(\partial D)$.

Theorem 3.2. If the sequence a_{n} is monotone decreasing with

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

and the partial sums of $\sum b_{n}$ are bounded, then $\sum a_{n} b_{n}$ converges
Proof. See Theorem 3.4.2 in [9].
Lemma 3.3.

$$
\sum_{k=1}^{n} \sin k x=\frac{\cos (x / 2)-\cos (n+1 / 2) x}{2 \sin (x / 2)}
$$

for all x with $\sin (x / 2) \neq 0$.
Proof. Since

$$
2 \sin A \sin B=\cos (B-A)-\cos (B+A)
$$

$$
\begin{aligned}
& \sin (x / 2) \sum_{k=1}^{n} \sin k x \\
& =\sin (x / 2) \sin x+\sin (x / 2) \sin 2 x+\cdots+\sin (x / 2) \sin n x \\
& =(\cos (x / 2)-\cos (3 x / 2))+(\cos (3 x / 2)-\cos (5 x / 2))+ \\
& \cdots+(\cos (n-1 / 2) x-\cos (n+1 / 2) x) \\
& =\cos (x / 2)-\cos (n+1 / 2) x .
\end{aligned}
$$

Corollary 3.4. $\sum_{n=1}^{\infty} \frac{\sin n \theta}{n}$ converges for every θ. In particular, the series converges uniformly for $a \leq x \leq \pi$, provided $a>0$.

Proof. It is now clear that partial sums of $\sum_{n=1}^{\infty} \sin n \theta$ are bounded by $1 /|\sin (\theta / 2)|$ by Lemma 3.3. By Theorem $3.2, \sum_{n=1}^{\infty} \frac{\sin n \theta}{n}$ converges for all θ except possibly those for which $\sin (\theta / 2)=0$. However, these are the values $x=0, \pm 2 \pi, \cdots$ and the series is clearly convergent for these also.

If $a>0$ and $a \leq|x| \leq \pi$, then

$$
\left|\frac{\cos (x / 2)-\cos n(n+1 / 2) x}{2 \sin (x / 2)}\right| \leq \frac{1}{\sin (a / 2)}
$$

for all n.
ThEOREM 3.5. If a periodic function $f(x)$ with period 2π is piecewise continuous in the interval $-\pi \leq x \leq \pi$ and has a left-hand derivative and right-hand derivative at each point of that interval, then the Fourier series of $f(x)$ is convergent. Its sum is $f(x)$, except at a point x_{0} at which $f(x)$ is discontinuous.

Proof. See Theorem 1(p575) in [7].
Theorem 3.6. $f(\theta)=\sum_{n=1}^{\infty} \frac{\sin n \theta}{n}$ is in $L^{\infty}(\partial D)$.
Proof. Let

$$
F(x)= \begin{cases}\frac{\pi}{2}-\frac{x}{2}-\frac{x^{2}}{4 \pi} & \text { if }-\pi \leq x \leq 0 \\ \frac{\pi}{2}+\frac{x}{2}-\frac{x^{2}}{4 \pi} & \text { if } 0 \leq x \leq \pi\end{cases}
$$

and let F be repeated periodically outside this interval. The resulting function $F(x)$ is continuous for all x and is piecewise smooth. It's Fourier series is

$$
\frac{2 \pi}{3}-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}
$$

By Theorem 3.5, a series in the above converges uniformly to $F(x)$. By Corollary 3.4,

$$
F^{\prime}(x)=\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin n x}{n}
$$

for $-\pi \leq x \leq \pi$, except for $x=0$.
Also, $F(x)$ is the periodic function of period 2π such that $F(0)=0$ and

$$
F(x)= \begin{cases}-\frac{1}{2}-\frac{x}{2 \pi} & \text { if }-\pi \leq x<0 \\ \frac{1}{2}-\frac{x}{2 \pi} & i f 0 \leq x \leq \pi\end{cases}
$$

Above two result implies that

$$
F(x)=\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin n x}{n}
$$

We have now proved that $f(\theta)=\sum_{n=1}^{\infty} \frac{\sin n \theta}{n}$ is in $L^{\infty}(\partial D)$.
THEOREM 3.7. If $f(\theta)=\sum_{n=1}^{\infty} \frac{\sin n \theta}{n}$, then $\widehat{P f}(z)=\frac{1}{2 i} \sum_{n=1}^{\infty} \frac{z^{n}}{n}$.
Proof.

$$
\begin{aligned}
\widehat{P f}(z) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f(\theta)}{1-z e^{-i \theta}} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{n=1}^{\infty} \frac{\sin n \theta}{n} \frac{1}{1-z e^{-i \theta}} d \theta \\
& =\sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\sin n \theta}{1-z e^{-i \theta}} d \theta \\
& =\sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{2 \pi} \int_{0}^{2 \pi} \sin n \theta \sum_{m=0}^{\infty}\left(z e^{-i \theta}\right)^{m} d \theta \\
& =\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \frac{1}{n} \frac{1}{2 \pi} z^{m} \int_{0}^{2 \pi} \sin n \theta\{\cos m \theta-i \sin m \theta\} d \theta
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\widehat{P f}(z) & =\sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{2 \pi} z^{n} \int_{0}^{2 \pi} \sin m \theta \cos n \theta d \theta \\
& =\sum_{n=1}^{\infty} \frac{1}{2 i} \frac{z^{n}}{n} \\
& =\frac{1}{2 i} \sum_{n=1}^{\infty} \frac{z^{n}}{n}
\end{aligned}
$$

Theorem 3.8. \widehat{P} is unbounded in $L^{\infty}(\partial D)$.
Proof. By Theorem 3.6,

$$
f(\theta)=\sum_{n=1}^{\infty} \frac{\sin n \theta}{n}
$$

in in $L^{\infty}(\partial D)$. Also

$$
\widehat{P f}(z)=\frac{1}{2 i} \sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

by Theorem 3.7. If z is a real number, $\widehat{P f}$ is not in $H^{\infty}(D)$.

References

[1] C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbols calculus, Amer. J. Math. 110 (1988), 921-953
[2] D. Bekolle, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350
[3] K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces \mathfrak{B}_{q}, J. Korean Math. Soc. 39 (2002), 277-287
[4] P. L. Druen, Theory of H^{p} spaces, Academic Press, New York, 1970.
[5] K. T. Hahn and K. S. Choi, Weighted Bloch spaces in \mathbb{C}^{n}, J. Korean Math. Soc. 35 (1998), 171-189.
[6] S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth \& Brooks/Cole Math. Series, Pacific Grove, CA.
[7] E. Kreyszig, Advanced Engineering Mathematics, John wiley \& sons, INC. 1993.
[8] M. Reed and B. Simon, Function analysis, Academic press, New York 1980.
[9] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill Publishing Co, 1964.
[10] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer Verlag, New York 1980.
[11] W. Rudin, Real and Complex Analysis, McGraw-Hill Publishing Co, 1982.
[12] K. H. Zhu, Operator theory in function spaces, Marcel Dekker, New York 1990.
$*$
Department of Information Security Konyang University
Nonsan 320-711, Republic Korea
E-mail: ksc@konyang.ac.kr

