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REGULARITY AND MULTIPLICITY OF SOLUTIONS

FOR A NONLOCAL PROBLEM WITH

CRITICAL SOBOLEV-HARDY NONLINEARITIES

Sarah Rsheed Mohamed Alotaibi and Kamel Saoudi

Abstract. In this work we investigate the nonlocal elliptic equation with
critical Hardy-Sobolev exponents as follows,

(P)

(−∆p)su = λ|u|q−2u+
|u|p
∗
s (t)−2u
|x|t in Ω,

u = 0 in RN \ Ω,

where Ω ⊂ RN is an open bounded domain with Lipschitz boundary,
0 < s < 1, λ > 0 is a parameter, 0 < t < sp < N , 1 < q < p < p∗s
where p∗s = Np

N−sp , p∗s(t) =
p(N−t)
N−sp , are the fractional critical Sobolev

and Hardy-Sobolev exponents respectively. The fractional p-laplacian

(−∆p)su with s ∈ (0, 1) is the nonlinear nonlocal operator defined on
smooth functions by

(−∆p)su(x) = 2 lim
ε↘0

∫
RN\Bε

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy, x ∈ RN .

The main goal of this work is to show how the usual variational meth-
ods and some analysis techniques can be extended to deal with nonlocal

problems involving Sobolev and Hardy nonlinearities. We also prove that

for some α ∈ (0, 1), the weak solution to the problem (P) is in C1,α(Ω).

1. Introduction

The purpose of this paper is mainly to study the nonlocal elliptic equation
with critical Hardy-Sobolev exponents as follows,

(P)

{
(−∆p)

su = λ|u|q−2u+ |u|p
∗
s (t)−2u
|x|t in Ω,

u = 0 in RN \ Ω,

where Ω ⊂ RN is an open bounded domain with Lipschitz boundary, 0 < s < 1,
λ > 0 is a parameter, 0 < t < sp < N , 1 < q < p < p∗s. As usual p∗s = Np

N−sp and

p∗s(t) = p(N−t)
N−sp are the fractional critical Sobolev and Hardy-Sobolev exponents
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respectively. The fractional p-laplacian (−∆p)
su with s ∈ (0, 1) is the nonlinear

nonlocal operator defined on smooth functions by

(−∆p)
su(x) = 2lim

ε↘0

∫
RN\Bε

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy, x ∈ RN .

The problems of this type are important in many fields of sciences, notably
the fields of physics, probability, finance, electromagnetism, astronomy, and
fluid dynamics, it also they can be used to accurately describe the jump Lévy
processes in probability theory and fluid potentials for more details see [1, 10]
and references therein.

Before giving the important result that we will investigate in this work, let
us briefly recall the literature concerning related problems with Sobolev and
Hardy nonlinearity. In [9] Chen, Mosconi and Squassina using Nehari manifold
approach and fibering maps established existence and multiplicity of solutions
for a class of nonlinear nonlocal problems with Sobolev and Hardy nonlinearity
at subcritical and critical growth

(1)

{
(−∆p)

su = λ|u|r−2u+ µ |u|
q−2u
|x|α in Ω,

u = 0 in Rn \ Ω,

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, 0 < s < 1,
λ, µ > 0 are two parameters, 0 ≤ α ≤ sp < N, 1 < p ≤ r ≤ p∗s, p ≤ q ≤
p∗s(α) where p∗s = Np

N−sp , p
∗
s(α) = p(N−α)

N−sp are the fractional critical Sobolev

and Hardy-Sobolev exponents respectively. Yan [36] using abstract critical
point theorems proved the existence, multiplicity, and bifurcation results for
the Brezis-Nirenberg problem for the fractional p-Laplacian operator involving
critical Hardy-Sobolev exponents

(2)

{
(−∆p)

su = λ|u|p−2u+ |u|p
∗
s (α)−2u
|x|α in Ω,

u = 0 in RN \ Ω,

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, 0 < s < 1,
λ > 0, 0 < α < sp < N.

If t = 0, then the problem (P) is reduced to

(3)

{
(−∆p)

su = λ|u|q−2u+ |u|p∗s−2u in Ω,

u = 0 in RN \ Ω,

where λ > 0 is a parameter and p∗s = Np
N−sp . We point out that many re-

searchers are paying a lot of attention on this nonlocal problem (3). Iannizzotto-
Liu-Perera-Squassina [20] established an existence result via Morse theory in
the subcritical case. The critical case is treated in Perera-Squassina-Yang
[26] with additional new abstract based on a pseudo-index related to the Z2-
cohomological index. These restrictions are used to prove the existence of a
range of the validity of the Palais-Smale condition. Note that, in this work,
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the bifurcation and multiplicity results are obtained for some restrictions on
the parameter λ. The Brezis-Nirenberg type existence result is studied in [24].
In [15] Ghanmi-Saoudi using the method of Nehari manifold and fibering maps
proved the existence and multiplicity of nonnegative solutions to the nonlo-
cal problem for subcritical concave-convex nonlinearities. Also, the Dirichlet
boundary value problem in the case of fractional Laplacian with concave-convex
type nonlinearity using variational methods has been studied in [2, 14, 29] and
references therein.

In the local setting (s = 1), the problem (P) becomes

(4)

{
−∆pu = λ|u|q−2u+ |u|p

∗−2u
|x|t in Ω,

u = 0 in Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary, 1 < p < N,
λ > 0 is a parameter, 0 < t < p, 1 < p ≤ q ≤ p∗(s) where p∗ = Np

N−p ,

is the critical Sobolev exponent and ∆pu = ∇ · (|∇u|p−2∇u) denotes the p-
Laplace operator. The results obtained by Ghoussoub-Yuan [17] is the starting
point on quasilinear problems with Hardy-Sobolev exponent. The authors ob-
tained the existence of infinitely many non-trivial solutions for the problem
(4). From this pioneering work, a lot of contributions have been done related
to existence, multiplicity, stability and regularity results on problems involving
Hardy-Sobolev exponent see [19, 23, 27, 30, 35] and references therein. In [23],
the authors studied an elliptic equation involving the critical Sobolev-Hardy ex-
ponents and singular potential. They obtained the existence of infinitely many
small solutions using concentration-compactness principle and a new version of
the symmetric mountain-pass lemma due to Kajikiya. In [19, 35], the concave
convex problems with multiple Hardy type terms is studied where multiplic-
ity results are obtained using Nehari manifold approach and fibering maps.
Perera-Zou [27], using critical point theorems based on a cohomological index
and a related pseudo-index proved the existence, multiplicity, and bifurcation
results for the case λ ≥ λ1 and extend results in the literature for 0 < λ < λ1,
where λ1 > 0 is the first eigenvalue of the eigenvalue problem

(5)

{
−∆pu = λ|u|p−2u in Ω,

u = 0 in Ω.

In the local setting case (s = 1 and p = 2) the problem (P) is reduced to
the semilinear problem with Sobolev-Hardy exponents

(6)

{
−∆u = λu+ |u|2

∗−2u
|x|2 in Ω,

u = 0 in Ω,

where Ω ⊂ RN is an open bounded domain with smooth boundary, λ > 0
is a parameter and 2∗ = 2N

N−2 is the critical Hardy-Sobolev exponent. This
problem has been paid more attention by many authors. We refer the readers
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to [8, 22, 34] and references therein. Cao and Han [8] proved the existence
of sign-changing solutions of problem (6) and obtained some estimates for all
weak solutions in H1(RN ). In [34], the authors studied problem (6) with two
critical Hardy-Sobolev exponents and boundary singularities. Using Ekeland’s
variational principle and strong maximum principle, they proved the existence
and multiplicity of positive solutions. Jiang and Tang [22], using variational
methods obtained the existence of positive solutions of problem (6) when the
Hardy-Sobolev-Mazáya potential is concerned.

Now, we state the theorems that we will proved in this paper.

Theorem 1.1. There exists Λ ∈ (0,∞) such that,

(i) ∀ λ ∈ (0,Λ), the problem (P) has a minimal solution.
(ii) For λ = Λ the problem (P) has at least one solution.
(iii) ∀ λ ∈ (Λ,∞) the problem (P) has no solution.

Theorem 1.2. For every λ ∈ (0,Λ), the problem (P) has multiple solutions.

2. A functional framework for the nonlocal problems

In this section, we start by recalling some notations which will be frequently
used throughout the rest of this work. We start by defining the following
function space. Define the fractional Sobolev space

W s,p
0 (RN ) :=

{
u ∈ Lp(RN ) : u measurable, |u|s,p < +∞, u ≡ 0 a.e. on Ωc

}
,

and the homogeneous fractional Sobolev space

W s,p(RN ) :=
{
u ∈ Lp(RN ) : u measurable, |u|s,p < +∞

}
,

the usual fractional Sobolev space with the Gagliardo norm

||u||s,p :=
(
||u||pp + |u|ps,p

) 1
p .

For a detailed account on the properties of W s,p(RN ) we refer the reader to
[25].

Let Ω ⊂ RN and define Q = R2N \ ((RN \ Ω) × (RN \ Ω)), then the space
(X, ‖ · ‖X) is defined by

X =

{
u : RN → R is measurable, u|Ω ∈ Lp(Ω) and

|u(x)− u(y)|
|x− y|

N+ps
p

∈ Lp(Q)

}
equipped with the Gagliardo norm

‖u‖X = ‖u‖p +

(∫
Q

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

.

Here ‖u‖p refers to the Lp-norm of u. We further define the space

X0 =
{
u ∈ X : u = 0 a.e. in RN \ Ω

}
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equipped with the norm

‖u‖ =

(∫
Q

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

.

The best Sobolev constant is defined as

(7) S = inf
u∈X0\{0}

∫
Q
|u(x)−u(y)|p
|x−y|N+ps dxdy(∫
Ω
|p∗s|dx

) p
p∗s

.

We now state the following definitions to the problem (P). At first, associated
to the problem (P) we have the functional energy Eλ : X0 → R defined by

Eλ(u) =
1

p

∫
Q

|u(x)− u(y)|p

|x− y|N+sp
dxdy − λ

q

∫
Ω

|u|qdx− 1

p∗s(t)

∫
Ω

|u|p∗s(t)

|x|t
dx.

Remark 2.1. Obviously, every critical point of Eλ is a weak solution of the
problem (P).

Now, we define a weak solution to the problem (P) as follows.

Definition 1. We say that u ∈ X0 is a weak solution of the problem (P) if for
all φ ∈ X0, one has∫

Q

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp
dx dy

= λ

∫
Ω

|u|q−2uφdx+

∫
Ω

|u|p∗s(t)−2u

|x|t
φ dx.

Definition 2. One calls a solution uλ of problem (P) is minimal if uλ ≤ v
almost every where in Ω for any further solution v of problem (P).

Then, we state the definitions of a sub and a super-solution to the problem
(P).

Definition 3. A function uλ ∈ X0 is called a weak subsolution to the problem
(P), if

(i) uλ > 0, and

(ii)

∫
Q

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(φ(x)− φ(y))

|x− y|N+ps
dxdy

− λ
∫

Ω

|uλ|q−2uλφdx−
∫

Ω

|uλ|p
∗
s(t)−2uλ
|x|t

φ dx ≤ 0

for every positive φ ∈ X0.

Definition 4. A function ūλ ∈ X0 is called a weak supersolution to the prob-
lem (P), if

(i) ūλ > 0, and
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(ii)

∫
Q

|ūλ(x)− ūλ(y)|p−2(ūλ(x)− ūλ(y))(φ(x)− φ(y))

|x− y|N+ps
dxdy

− λ
∫

Ω

|ūλ|q−2ūλφdx−
∫

Ω

|ūλ|p
∗
s(t)−2ūλ
|x|t

φ dx ≥ 0

for all positive φ ∈ X0.

We now list out the embedding results (See [31,32] for more details).

Lemma 2.2. The following embedding results holds for the space X0.

(1) If Ω has a Lipshitz boundary, then the embedding X0 ↪→ Lq(Ω) for

q ∈ [1, p∗s), where p∗s = Np
N−ps .

(2) The embedding X0 ↪→ Lp
∗
s (Ω) is continuous.

For u ∈ Lp∗s(t)(RN ), we denote by

|u|p∗s(t) =

(∫
RN

|u|p∗s(t)

|x|t
dx

)1/p∗s(t)

.

We now must recall fractional Hardy-Sobolev inequality.

Lemma 2.3 (Hardy Sobolev inequality [9]). Assume that 0 ≤ t ≤ ps < N.
Then there exists a positive constant C such that

(8)

(∫
Ω

|u|p∗s(t)

|x|t
dx

)1/p∗s(t)

≤ C
(∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)1/p

for every u ∈W s,p
0 (Ω).

The following embedding results has been proved in [9].

Lemma 2.4. (1) The embedding W s,p
0 (Ω)→ Lq(Ω, dx|x|t ) is continuous for

q ∈ [1, p∗s(t)] and compact for q ∈ [1, p∗s(t)).
(2) For p > 1, W s,p

0 (Ω) and Ds,p(RN ) are separable reflexive Banach space
with respect to the norm [·]s,p.

We will also define for any α ∈ [0, ps] the positive numbers

St = inf

{∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy : u ∈W s,p

0 (Ω) with

∫
Ω

|u|p∗s(t)

|x|t
dx = 1

}
.

3. Existence of weak solutions

This section is devoted to show the existence of a solution to the problem (P).
Our first result is to show that the functional Eλ possesses a local minimum in
a small neighborhood of the origin in X0. We start by proving the coerciveness
of the functional Eλ. Precisely, we have the following result.

Lemma 3.1. There exist λ0 > 0, R0 > 0 and δ0 > 0 such that Eλ(u) ≥ δ0 > 0
for all ‖u‖ = R0.
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Proof. Using Hölder inequality and the fractional Sobolev-Hardy inequality, we
have

Eλ(u) =
1

p

∫
Q

|u(x)− u(y)|p

|x− y|N+sp
dx dy − λ

q

∫
Ω

|u|qdx− 1

p∗(t)

∫
Ω

|u|p∗s(t)

|x|t
dx

≥ 1

p
||u||pX0

− λ

q
C0||u||qq −

C1

p∗s(t)
||u||p

∗
s(t)

= ||u||q(1

p
||u||p−q − λ

q
C0 −

C1

p∗s(t)
||u||p

∗
s(t)−q),

where C0, C1 are two positive constants. Put f(x) = 1
px

p−q − C1

p∗s(t)x
p∗s(t)−q −

λ
qC0. We find that there is a constant R =

(
p∗s(t)(p−q)
pC1(p∗s(t)−q)

)1/p∗s(t)−p
> 0 such

that f(R) = max
k>0

f(k) > 0. Choosing λ0 = qf(R)
C0

, we deduce the existence of a

constant δ0 > 0 satisfying
Eλ(u) ≥ δ0 > 0

for all λ ∈ (0, λ0). The proof of Lemma 3.1 is now completed. �

Lemma 3.2. Eλ possesses a local minimum close to the origin in X0 for all
λ ∈ (0, λ0).

Proof. Let λ0, R0 and δ0 as in Lemma 3.1. Noting that for all ϕ ∈ X0, ϕ ≥ 0,
ϕ 6= 0 and r > 1, we have

Eλ(rϕ) =
|r|p

p
||ϕ||p − λ

q
|r|q

∫
Ω

|ϕ|qdx− rp
∗
s(t)

p∗s(t)

∫
Ω

|ϕ|p∗s(t)

|x|t
dx.

Hence, Eλ(rϕ) → −∞ as r → +∞ since q < p < p∗s(t). So, Eλ(ru) < 0
as r → ∞ for all u > 0. That is, for ||u|| < R0 sufficiently small, we have
c = inf

u∈BR0

Eλ(u) < 0.

Now, by the definition of the infimum, we consider a minimizing sequence
{un} for c. Then, using the reflexivity of X0, there exists a subsequence, still
denoted by un, there exists u such that

un → u weakly in X0

un → u strongly in Lk(Ω, dx|x|t ) for 1 ≤ k < p∗s(t)

un → u pointwise a.e. in Ω.

Thus, by Brèzis-lieb Lemma [5] we get,

|un|
p∗s(t)

p∗s(t) = |u|p
∗
s(t)

p∗s(t) + |un − u|
p∗s(t)

p∗s(t) + o(1),(9)

|un|qq = |u|qq + |un − u|qq + o(1),(10)

||un||p = ||u||p + ||un − u||p + o(1).(11)

Therefore, using Equations (9), (10) and (11), we conclude that

Eλ(un) = Eλ(u) +
1

p
||un − u||p −

1

q
|un − u|q −

1

p∗s(t)
|un − u|

p∗s(t)

p∗s(t) + o(1).
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Moreover, we observe that from Equations (9), (10) and (11) u, un − u ∈ Br
for u sufficiently large and

1

p
||un − u||p −

1

q
|un − u|qq −

1

p∗s(t)
|un − u|

p∗s(t)

p∗s(t) ≥ o(1).

Hence, as n→∞, we deduce that

Eλ(un) ≥ Eλ(uλ) + o(1).

Since c = inf
||u||X0

≤r
Eλ(u) we have u 6= 0, which is a minimizer of Eλ over X0

for all λ ∈ (0, λ0). �

Let us define

Λ := inf{λ > 0: (P) has no weak solution}.
We show the following result regarding Λ.

Lemma 3.3. Assume 1 < p < q < p∗s. Then 0 < Λ <∞.

Proof. From Lemma 3.2 u 6= 0 is a local minimizer of Eλ over X0. So, since
Eλ(ru) < 0 for r small, we have c < 0. Hence, there exists uλ ∈ Br satisfying
Eλ(uλ) = c and

(12)

{
(−∆p)

suλ = λ|uλ|q−2uλ + |uλ|p
∗
s (t)−2

|x|t in Ω,

uλ = 0 in Rn \ Ω.

From the strong maximum principle of the fractional p-Laplacian we deduce
that uλ > 0 in Ω. Consequently, uλ is a weak solution to the problem (P).
Hence Λ > 0.

Now suppose Λ =∞. Then, we know from above that the problem (P) has
a solution for all λ. Choose λ∗ > 0 such that

λ|r|q−2r +
|r|p∗s(t)−2r

|x|t
≥ (λ1 + ε)rp−1 for all r > 0, ε ∈ (0, 1) and λ > λ∗.

Clearly ū = uλ is a supersolution of the eigenvalue problem

(13) u ∈ X0 and (−∆)spu = (λ1 + ε)|u|p−2u in Ω

for all ε ∈ (0, 1). Moreover, we can choose k small enough such that u := kφ1

is a subsolution of the problem (13) (φ1 is the eigenfunction associated to the
eigenvalue λ1). Therefore, using the boundedness of uλ (see Theorem 6.3)
combine with the boundedness of φ1, we can choose k small enough such that
u ≤ ū.

Now, we define the following monotone iterative scheme:{
u0 = kφ1,

un ∈ X0 and (−∆)spun = (λ1 + ε)|un|p−2un in Ω.

From the weak maximum principle, it is easy to see that

u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ · · · ≤ uλ.
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Hence, the sequence {un} is bounded in X0 and consequently, has a weakly
convergent subsequence {un} that converges to u0. Then, u0 is a solution to
the problem (13) for any arbitrary ε ∈ (0, 1), contradicting the fact that λ1 is an
isolated and simple point in the spectrum of (−∆)sp in X0 and by consequence
Λ <∞. The proof of Lemma 3.3 is now completed. �

Combining the result Lemma 3.3 with the previous notations provides the
following existence result.

Lemma 3.4. Suppose that uλ is a weak sub-solution while uλ is a weak super-
solution to problem (P) such that uλ ≤ uλ. Then, there exists a weak solution
uλ to (P) such that uλ ≤ uλ ≤ uλ a.e. in Ω.

Proof. Our proof is inspired from Ghanmi-Saoudi [14]. Consider

M = {uλ ∈ X0 : uλ ≤ uλ ≤ uλ} .
So, it is simple to see that M is a closed convex set. Moreover, it is clear that
Eλ is weakly lower semicontinuous on M. Applying Lemma 5.4, we obtain the
existence of uλ ∈M satisfying

Eλ(uλ) = inf
u0∈M

Eλ(u0).

Now, we proceed to prove that uλ is a weak solution to the problem (P). For
this, we introduce ψ ∈ M define by ψε = uλ + εφ − φε + φε ∈ M where
φε = (uλ + εφ − uλ)+ ≥ 0 and φε = (uλ + εφ − uλ)− ≥ 0 for any φ ∈ X0 and
ε > 0. Then, again from Lemma 3.2, since uλ is a local minimizer of Eλ on M ,
one has

〈E′λ(uλ), ψε − uλ〉 ≥ 0.

So,

〈E′λ(uλ), φ〉 ≥ 1

ε
(〈E′λ(uλ), φε〉 − 〈E′λ(uλ), φε〉).

Which gives,∫
Q

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(φ(x)− φ(y))

|x− y|N+sp
dxdy

−
∫

Ω

(
λ|uλ|q−2uλ +

|uλ|p
∗
s(t)−2uλ
|x|t

)
φdx ≥ 1

ε
(Hε −Hε),(14)

where

Hε =

∫
Q

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(φε(x)− φε(y))

|x− y|N+sp
dxdy

−
∫

Ω

(
λ|uλ|q−2uλ +

|uλ|p
∗
s(t)−2uλ
|x|t

)
φεdx

and

Hε =

∫
Q

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(φε(x)− φε(y))

|x− y|N+sp
dxdy
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−
∫

Ω

(
λ|uλ|q−2uλ +

|uλ|p
∗
s(t)−2uλ
|x|t

)
φεdx.

Now, let us recall the following inequality

(15) |a− b|p ≤ 2p−2
(
|a|p−2a− |b|p−2b

)
(a− b) for p ≥ 2, a, b ∈ R.

Putting Ωε = {uλ + εφ ≥ uλ > uλ} and Ωε = {uλ + εφ < uλ} . So, as uλ is a
super-solution, we obtain

〈E′λ(uλ), φε〉
≥ 〈E′λ(uλ)− E′λ(uλ), φε〉

=

∫
Q

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(φε(x)− φε(y))

|x− y|N+sp
dxdy

− λ
∫

Ω

(
|uλ|q−2uλ − |uλ|q−2uλ

)
φεdx

−
∫

Ω

(
|uλ|p

∗
s(t)−2uλ
|x|t

− |uλ|
p∗s(t)−2uλ
|x|t

)
φεdx

=
(∫

Ωε×Ωε
+

∫
Ωε×Ωε

+

∫
Ωε×Ωε

)
|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(φε(x)− φε(y))

|x− y|N+sp
dxdy

− λ
∫

Ωε

(
|uλ|q−2uλ − |uλ|q−2uλ

)
φεdx

−
∫

Ωε

(
|uλ|p

∗
s(t)−2uλ
|x|t

− |uλ|
p∗s(t)−2uλ
|x|t

)
φεdx

=

∫
Ωε×Ωε

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))((uλ − uλ)(x)− (uλ − uλ)(y))

|x− y|N+sp
dxdy

+ ε

∫
Ωε×Ωε

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(φ(x)− φ(y))

|x− y|N+sp
dxdy

+

∫
Ωε×Ωε

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(uλ − uλ)(x)

|x− y|N+sp
dxdy

+ ε

∫
Ωε×Ωε

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))

|x− y|N+sp
φ(x) dxdy

−
∫

Ωε×Ωε

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(uλ − uλ)(y)

|x− y|N+sp
dxdy

− ε
∫

Ωε×Ωε

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))

|x− y|N+sp
φ(y) dxdy

− λ
∫

Ωε

(
|uλ|q−2uλ − |uλ|q−2uλ

)
(uλ − uλ)dx
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−
∫

Ωε

(
|uλ|p

∗
s(t)−2uλ
|x|t

− |uλ|
p∗s(t)−2uλ
|x|t

)
(uλ − uλ)dx

− ελ
∫

Ωε

(
|uλ|q−2uλ − |uλ|q−2uλ

)
φdx

− ε
∫

Ωε

(
|uλ|p

∗
s(t)−2uλ
|x|t

− |uλ|
p∗s(t)−2uλ
|x|t

)
φdx

≥ 3

2p−2

∫
Ωε×Ωε

|(uλ − uλ)(x)− (uλ − uλ)(y)|p

|x− y|N+sp
dxdy

+ ε

∫
Ωε×Ωε

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(φ(x)− φ(y))

|x− y|N+sp
dxdy

− λ
∫

Ωε

(
|uλ|q − |uλ|q

)
dx−

∫
Ωε

(
|uλ|p

∗
s(t)

|x|t
− |uλ|

p∗s(t)

|x|t

)
dx

− ελ
∫

Ωε

(
|uλ|q−2u− |uλ|q−2uλ

)
φ

− ε
∫

Ωε

(
|uλ|p

∗
s(t)−2uλ
|x|t

− |uλ|
p∗s(t)−2uλ
|x|t

)
φdx

≥ ε

∫
Ωε×Ωε

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(φ(x)− φ(y))

|x− y|N+sp
dxdy

− ελ
∫

Ωε

(
|uλ|q−2u− |uλ|q−2uλ

)
φdx

− ε
∫

Ωε

(
|uλ|p

∗
s(t)−2uλ
|x|t

− |uλ|
p∗s(t)−2uλ
|x|t

)
φdx

follow from the inequality (15). Now, since the measure of the domain of
integration Ωε go to zero as ε→ 0. So 1

εH
ε ≥ o(1).

In the same way, we prove that 1
εH

ε ≤ o(1). Therefore, using (14) and letting
ε→ 0, we obtain∫

Q

|uλ(x)− uλ(y)|p−2(uλ(x)− uλ(y))(φ(x)− φ(y))

|x− y|N+sp
dxdy

−
∫

Ω

(
λ|uλ|q−2uλ +

|uλ|p
∗
s(t)−2uλ
|x|t

)
φdx ≥ o(1),

since φ is an arbitrary test function, we obtain the equality if we change φ by
−φ. Hence, uλ is a weak solution to the problem (P). �

As a consequence of Lemma 3.4 we obtain the following crucial result.

Lemma 3.5. For all λ ∈ (0,Λ], the problem (P) has a weak solution uλ ∈ X0.
Moreover, uλ is a local minimum for Eλ|C1(Ω).
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Proof. From the definition of Λ there exists µ ∈ (0,Λ) such that the problem
(P) has a solution by Lemma 3.3, say wµ. So, uλ = wµ becomes a super-
solution to the problem (P) with λ < µ. Consider the eigenvalue problem as
follows: 

(−∆p)
sφ1 = λ1|φ1|p−2φ1 in Ω,

φ1 > 0 in Ω,

φ1 = 0 in RN \ Ω,

where λ1 is the smallest eigenvalue and φ1 is the corresponding eigenfunction.
Now, let ε > 0, satisfying εφ1 ≤ u and εp−qφp−q1 ≤ λ

λ1
.

Putting, uλ = εφ1 ones has

(−∆p)
suλ = λ1ε

p−1φp−1
1

≤ λεq−1|φ1|q−2φ1 +
εp
∗
s(t)−1|φ1|p

∗
s(t)−2φ1

|x|t

= λ|uλ|q−2uλ +
|uλ|p

∗
s(t)−2uλ
|x|t

.

So, uλ is a sub-solution to the problem (P). Hence, applying the weak maximum
principle, we get uλ ≤ uλ. Consequently, from Lemma 3.4, we obtain that
problem (P) has a solution uλ for all λ ∈ (0,Λ) such that uλ ≤ uλ ≤ uλ.
Hence, by the strong maximum principle it follows that uλ < uλ < uλ and by
the regularity results uλ ∈ C1,β(Ω) for some β ∈ (0, 1). Therefore, we can find

δ > 0 small enough such that if u ∈ C =
{
u ∈ C1(Ω) \ ||u− uλ||C1(Ω) < 1

}
.

Thus, uλ < u < uλ in Ω. Further, uλ is a local minimum of Eλ this completes
the proof of Lemma 3.5. �

Now, we show the following result.

Lemma 3.6. Problem (P) has at least one solution if λ = Λ.

Proof. Consider an increasing sequence {λk}k∈N such that λk converge to Λ as
k →∞. So, from Lemma 3.5 uk = uλk be a weak solution to the problem (P)
for λ = λk. Therefore,∫

Q

|uk(x)− uk(y)|p−2(uk(x)− uk(y))(φ(x)− φ(y))

|x− y|N+sp
dxdy

= λk

∫
Ω

|uk|q−2ukφdx+

∫
Ω

|uk|p
∗
s(t)−2uk
|x|t

φdx.(16)

Then, take φ = uk in (16), we obtain

(17)

∫
Q

|uk(x)− uk(y)|p

|x− y|N+sp
dxdy − λk

∫
Ω

|uk|qdx−
∫

Ω

|uk|p
∗
s(t)

|x|t
dx = 0.
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Again, from Lemma 3.5

Eλk(uk) =
1

p

∫
Q

|uk(x)− uk(y)|p

|x− y|N+sp
dxdy(18)

− λk
q

∫
Ω

|uk|qdx−
1

p∗s(t)

∫
Ω

|uk|p
∗
s(t)

|x|t
dx ≤ A,

where A is a positive constant. Now, injecting (17) in (18), we get

1

p

(
λk

∫
Ω

|uk|qdx+

∫
Ω

|uk|p
∗
s(t)

|x|t
dx

)
(19)

− λk
q

∫
Ω

|uk|qdx−
1

p∗s(t)

∫
Ω

|uk|p
∗
s(t)

|x|t
dx ≤ A.

Which implies that,

(20)

(
1

p
− 1

p∗s(t)

)∫
Ω

|uk|p
∗
s(t)

|x|t
dx ≤ A+ λk

(
1

q
− 1

p

)∫
Ω

|uk|qdx.

Again, injecting (20) in (17), it follows that,

(21) ||uk||p−qX0
≤ A1 +

A2

||uk||qX0

,

where A1 and A2 are two positive constants.
Therefore, from Equation (21), we can easily obtain that sup

k∈N
||uλk ||X0

<∞.

So, since the space X0 is reflexive, we obtain the existence of a sub sequence
which still denoted by {uk}, satisfying uk ⇀ uΛ in X0 as k → ∞. Taking the
limit in (16) as k →∞, we obtain that:∫

Q

|uΛ(x)− uΛ(y)|p−2(uΛ(x)− uΛ(y))(φ(x)− φ(y))

|x− y|N+sp
dxdy

= Λ

∫
Ω

|uΛ|q−2uΛφdx+

∫
Ω

|uΛ|p
∗
s(t)−2uΛ

|x|t
φdx.

Therefore, uΛ is a weak solution to the problem (P). This completes the proof
of Lemma 3.6. �

We next prove that problem (P) possesses a minimal solution.

Corollary 3.7. For all λ ∈ (0,Λ] problem (P) has a minimal solution uλ in
X0.

Proof. From Lemma 3.5 we know that problem (P) has a solution for all λ ∈
(0,Λ). Now, we define a sequence {un} by the following monotone iterative
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scheme: 
u0 = uλ,

(−∆)spun+1 = λ|un|q−2un + |un|p
∗
s (t)−2un
|x|t in Ω,

un > 0 in Ω,

un = 0 in RN \ Ω,

for each n ∈ N and u0 is a weak sub-solution to the problem (P). Now, by
the choice of u0 we have u0 ≤ uλ where uλ is any solution to the problem (P),
whose existence follow from Lemma 3.5 for all λ ∈ (0,Λ) and from Lemma 3.6
for λ = Λ. From the weak maximum principle, it is easy to see that

u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ · · · ≤ uλ.
Moreover, from Theorem 6.3, we know that uλ is in L∞(Ω), which gives that
{un} is uniformly bounded in X0. Again, as in Lemma 3.5 it is simple to show
that {un} converges ûλ to be a weak solution to the problem (P). Now, to
prove that ûλ is the minimal solution, we let that wλ to be a weak solution
such that u0 = uλ ≤ wλ. Using again the weak maximum principle we have
un ≤ wλ for each n ∈ N. Passing to limit, we get ûλ ≤ wλ and that ûλ is the
smallest solution. The proof of Corollary 3.7 is now completed. �

4. C1 versus W s,p local minimizers of the functional energy

This section is devoted to prove a crucial lemma in showing multiplicity of
solutions. It has been shown in the case p = 2 in [6] for the case of critical
growth functionals Eλ : H1

0 (Ω) → R, Ω ⊂ RN , N ≥ 3, and later for critical

growth functionals Eλ : W 1,p
0 (Ω)→ R, 1 < p < N , Ω ⊂ RN , N ≥ 3 in [13]. A

key feature of these latter works is the uniform C1,α estimate they obtain for
equations like (Pε) but involving two p-Laplace operators. Using constraints
based on Lp-norms rather than Sobolev norms as in [13], the equations for
which uniform estimates are required can be simplified to a standard type
involving only one p-Laplace operator. This approach was followed in [7] in
the subcritical case, in [11] in the critical case adopted in [18, 28] and also
adopted in this work to deal with the nonlocal elliptic equation with critical
Hardy-Sobolev exponents. More precisely, we have the following result:

Theorem 4.1. Let u ∈ X0 be a local minimizer of Eλ in C1-topology; that is,

∃ r1 > 0 such that u ∈ C1(Ω), ‖u− u0‖C1(Ω) < r1 ⇒ Eλ(u0) ≤ Eλ(u).

Then, also u0 is a local minimum of Eλ in X0 topology; that is,

∃ r2 > 0 such that u ∈ X0, ‖u− u0‖X0 < r2 ⇒ Eλ(u0) ≤ Eλ(u).

Proof. Firstly, using the smoothness of Ω, we have from Theorem 6.4, that
u ∈ C1,β(Ω) for some β ∈ (0, 1). Define

χ(w) =
1

p∗s

∫
Ω

|w − u0|p
∗
sdx,w ∈ X0(22)
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and

Cε = {u ∈ X0 : χ(u) ≤ ε}.

Now, we proceed by contradiction, i.e., suppose that the conclusion of the
Theorem 4.1 does not holds. u is not a local minimizer. Then, as in [6],
we first make a truncation argument to get the weak lower semi-continuity
property of the energy functional. Further, consider the truncated functional

Eλ,j(u) =
1

p
‖u‖pX −

1

q

∫
Ω

|u|qdx−
∫

Ω

Tj(u)p
∗
s(t)−2Tj(u)

p∗s(t)|x|t
dx, ∀u ∈ X0,

where

Tj(w) =


−j w ≤ −j,
w −j ≤ w ≤ j,
j w ≥ j.

By the ‘Lebesgue theorem’ we have, for any u ∈ X0, Eλ,j(u)→ Eλ(u) as j →∞.
It follows, from the truncation and this convergence that for each ε > 0, there
is some jε (with jε →∞ as ε→ 0+) such that Eλ,jε(uε) ≤ Eλ(uε) ≤ Eλ(u0).

On the other hand, since Cε is closed, convex and since Eλ,jε is weakly lower
semicontinuous we deduce that Eλ,jε achieves its infimum at some uε ∈ Cε.
Therefore, for ε > 0 small enough, we have

Eλ,jε(uε) ≤ Eλ(uε) < Eλ(u0).

By Lagrange multiplier, there exists µε such that E′λ,jε(uε) = µεχ
′(uε). We

will first show that µε ≤ 0. Suppose µε > 0, then ∃ φ ∈ X0 such that

〈E′λ,j(uε), φ〉 < 0 and 〈χ′(uε), φ〉 < 0.

Then for small δ > 0 we have

Eλ,j(uε + δφ) < Eλ,j(uε),

χ(uε + δφ) < χ(uε) = ε

which is a contradiction to uε being a minimizer of Eλ,j in Cε it follows that
µε ≤ 0.

By the construction we have uε → u0 in Lp
∗
s (Ω) as ε > 0 and we deduce the

boundedness of uε in X0.
Claim: {uε} is bounded in L∞(Ω) as ε→ 0.
Case i: inf0<ε<1{µε} > −∞ (µε ∈ (−l, 0) where l > −∞).
Look at

(Pε) : (−∆p)
su = |u|q−2u+

|Tj(u)|p∗s(t)−2Tj(u)

|x|t
+ µε|u− u0|p

∗
s−2(u− u0),

which is satisfied weakly by uε. Further, since −l ≤ µε ≤ 0, there exist M , c
such that

(−∆p)
s(uε − 1)+ ≤M + c|(uε − 1)+|p

∗
s−2(uε − 1)+.
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By the Moser iteration method we get {uε} is bounded in L∞(Ω). By the
compact embedding C1,β(Ω) ↪→ C1,κΩ) for any κ < β, we have uε → u0 which
contradicts the assumption made.
Case ii: inf0<ε<1{µε} = −∞.
Let us assume µε ≤ −1. In this case, there exist M > 0, independent of ε, and
ε0 > 0 such that for 0 < ε < ε0

|w|q−2w+
|Tj(w)|p∗s(t)−2Tj(w)

|x|t
+ µε|w− u0(x)|p

∗
s−2(w− u0(x)) < 0, if w > M.

Then from the weak comparison principle on (−∆p)
s, we get uε ≤M for ε > 0

sufficiently small. Since u0 is a local C1-minimizer, u0 is a weak solution to
(P) and hence

〈(−∆p)
su0, φ〉 =

∫
Ω

|u0|q−2u0φdx+

∫
Ω

|Tj(u0)|p∗s(t)−2Tj(u0)

|x|t
φdx(23)

∀ φ ∈ C∞c (Ω). In fact, we have for every function w ∈ X0, u0 satisfies

〈(−∆p)
su0, w〉 =

∫
Ω

|u0|q−2u0wdx+

∫
Ω

|Tj(u0)|p∗s(t)−2Tj(u0)

|x|t
wdx.(24)

Similarly,

〈(−∆p)
suε, w〉 =

∫
Ω

|uε|q−2uεwdx+

∫
Ω

|Tj(uε)|p
∗
s(t)−2Tj(uε)

|x|t
wdx.(25)

On subtracting Eq. (24) from Eq. (25) and testing with w = |uε − u0|β−1(uε −
u0), where β ≥ 1, we obtain

0 ≤ β〈(−∆p)
suε − (−∆p)

su0, |uε − u0|β−1(uε − u0)〉

−
∫

Ω

(
|uε|q−2uε − |u0|q−2u0

)
|uε − u0|β−1(uε − u0)dx

=

∫
Ω

(
|Tj(uε)|p

∗
s(t)−2Tj(uε)

|x|t
− |Tj(u0)|p∗s(t)−2Tj(u0)

|x|t

)
|uε − u0|β−1(uε − u0)dx+ µε

∫
Ω

|uε − u0|p
∗
s+β−1dx.(26)

By the Hölder’s inequality and the bounds of uε, u0 we obtain

−µε‖uε − u0‖
p∗s−1
p∗s+β−1 ≤ C|Ω|

p∗s−1

p∗s+β−1 .(27)

Here C is independent of ε and β. On passing the limit β → ∞ we get

−µε‖uε − u0‖
p∗s−1
∞ ≤ C. Working on similar lines we end up getting uε is

bounded in C1,β(Ω) independent of ε and the conclusion follows. This marks
an end to the prove of the claim of Case ii. The proof of Theorem 4.1 is now
completed. �
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5. Multiplicity of weak solutions

This section is devoted to show the existence of a second critical point vλ
different from the critical point uλ of the functional Eλ energy obtained in
Section 3. The critical point vλ of Eλ is also a point where the Gâteaux
derivative of the functional Eλ vanishes. Therefore, vλ will solve the problem
(P). We will prove vλ 6= uλ. First, we now introduce a generalized notion of
Palais Smale sequence for Eλ.

Definition 5. Let F ⊂ Ω, be closed and c ∈ R. Then a sequence {vn} ⊂ X0

is said be a Palais Smale sequence [in short (PS)F,c] for the functional energy
Eλ around F at the level c, if

lim
n→∞

dist (xn, F ) = 0, lim
n→∞

Eλ(xn) = c & lim
n→∞

‖Eλ′(xn)‖ = 0.

Now, we start by proving the compactness property for the functional energy
Eλ.

Lemma 5.1. Let F ⊂ Ω be a closed and c ∈ R. Let {vn} ⊂ X0 be a (PS)F,c
sequence for the functional energy Eλ. Then, Eλ satisfies the (PS)c for all

c <

(
1

p
− 1

p∗s(t)

)
S
N−t
ps−t
t .

Proof. Since {vn} is a (PS)F,c sequence for the functional energy Eλ, so from
Definition 5, we have

(28) Eλ(vn) = c+ on(1), 〈E′λ(vn), vn〉 ≤ c‖vn‖X0
.

That is,

1

p
||vn||p −

∫
Ω

(
λ|vn|q

q
+
|vn|p

∗
s(t)

p∗s(t)|x|t

)
dx = Eλ(vn) = c+ on(1),(29)

||vn||p −
∫

Ω

(
λ|vn|q +

|vn|p
∗
s(t)

|x|t

)
dx = 〈E′λ(vn), vn〉 = on(1)||vn||(30)

as n→∞. Therefore, it follows that

c+ on(1)||vn|| ≥ pEλ(vn)− 〈E′λ(vn), vn〉 = λ

(
1− p

q

)∫
Ω

|vn|q dx

+

(
1− p

p∗s(t)

)∫
Ω

|vn|p
∗
s(t) dx.(31)

Now, since p∗s(t) is greater than p, then (31) implies

(32)

∫
Ω

|vn|p
∗
s(t) dx ≤ C(1 + ||vn||)

for some constant C > 0. Moreover, using the Hölder inequality and Eq. (31),
we obtain ∫

Ω

|vn|q dx =

∫
Ω

|vn|q

|x|
qt

p∗s (t)
|x|

qt
p∗s (t) dx
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≤ C1

(∫
Ω

|vn|p
∗
s(t)

|x|t
dx

) q
p∗s (t)

≤ C1

(
1 + ||vn||

q
p∗s (t)

)
(33)

for some constant C1 > 0. So Eqs. (29)-(30) combine with Eqs. (32)-(33) gives

(34) ||vn||p ≤ C2(1 + ||vn||)
for some constant C2 > 0. Which implies the boundedness of {vn}n in X0.
Now, since the space X0 is a reflexive space, there exists vλ ∈ X0 such that
vn ⇀ vλ in X0, strongly in Lk(Ω) for all k ∈ [1, p∗s], and a.e. in Ω (see [25],
Corollary 7.2). Let p′ the Hölder conjugate of p given by p′ = p

p−1 , then

|vn(x)− vn(y)|p−2(vn(x)− vn(y))/|x− y|(N+sp)/p′ is bounded in Lp
′
(R2N ) and

converges to |vλ(x) − vλ(y)|p−2(vλ(x) − vλ(y))/|x − y|(N+sp)/p′ in R2N and

(vλ(x)− vλ(y))/|x− y|(N+sp)/p ∈ Lp(R2N ), so∫
Q

|vn(x)− vn(y)|p−2(vn(x)− vn(y))(Φ(x)− Φ(y))

|x− y|N+sp
dx dy

→
∫
Q

|vλ(x)− vλ(y)|p−2(vλ(x)− vλ(y))(Φ(x)− Φ(y))

|x− y|N+sp
dx dy for any Φ ∈ X0.

Moreover, ∫
Ω

|vn|q−2vnΦ dx→
∫

Ω

|vλ|q−2vλΦ dx

and ∫
Ω

|vn|p
∗
s(t)−2

|x|t
vnΦ dx→

∫
Ω

|vλ|p
∗
s(t)−2

|x|t
vλΦ dx

since |vn|
p∗s (t)−2vn

|x|
t

p∗s (t)
is bounded in

(
Lp
∗
s(t)
)′

and converges to |vλ|
p∗s (t)−2vλ

|x|
t

p∗s (t)
′

a.e. in Ω,

and vn

|x|
t

p∗s (t)
∈ Lp∗s(t). Hence, taking the limit when n→∞ in (30) and applying

the embedding result in Lemma 2.4 we conclude E′λ(vλ) = 0. Consequently,
since 〈E′λ(vλ), vλ〉 = 0, it follows that

Eλ(vλ) = λ

(
1

p
− 1

q

)∫
Ω

|vλ|q dx+

(
1

p
− 1

p∗s(t)

)∫
Ω

|vλ|p
∗
s(t)

|x|t
dx ≥ 0.(35)

Next, we prove that vn → vλ strongly in X0. Indeed, combine Lemma in [9]
with the boundedness of {vn}n, we get

(36) Eλ(vn) = Eλ(vλ) +
1

p
||vn − vλ||p −

1

p∗s(t)

∫
Ω

|vn − vλ|p
∗
s(t)

|x|t
dx+ on(1),

and

on(1) = 〈E′λ(vn), vn〉 − 〈E′λ(vλ), vλ〉

= ||vn − vλ||p −
∫

Ω

|vn − vλ|p
∗
s(t)

|x|t
dx+ on(1).(37)
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Therefore, Equation (37) gives

1

p
||vn − vλ||p −

1

p∗s(t)

∫
Ω

|vn − vλ|p
∗
s(t)

|x|t
dx(38)

=

(
1

p
− 1

p∗s(t)

)
||vn − vλ||p + on(1).

Now, using Eq. (35) and Eq. (36), we obtain

1

p
||vn − vλ||p −

1

p∗s(t)

∫
Ω

|vn − vλ|p
∗
s(t)

|x|t
dx ≤ Eλ(vn) + on(1) = c+ on(1).

Then, for c <
(

1
p −

1
p∗s(t)

)
S
N−t
ps−t
t , it follows that

(39) lim sup
n

(
1

p
− 1

p∗s(t)

)
||vn − vλ||p <

(
1

p
− 1

p∗s(t)

)
S
N−t
ps−t
t .

So Equation (39) combine with the fractional Sobolev-Hardy inequality, gives

on(1) = ||vn − vλ||p −
1

p∗s(t)

∫
Ω

|vn − vλ|p
∗
s(t)

|x|t
dx

≥ ||vn − vλ||p − S
−p∗s (t)
p

t ||vn − vλ||p
∗
s(t)

= ||vn − vλ||p
(

1− S
−p∗s (t)
p

t ||vn − vλ||p
∗
s(t)−p

)
= C3||vn − vλ||p

for some constant C3 > 0. Therefore, the proof of the claim follow and com-
pletes the proof of Lemma 5.1. �

Now using Lemma 3.2 with the fact that Eλ(tu) → −∞ as t → ∞ for all
u ∈ X0, u > 0, we conclude that the functional Eλ has the mountain pass
geometry close to uλ. Consequently, we may fix e ∈ X0, e > 0 satisfying
Eλ(e) < 0. Define the complete metric space

Γ = {η ∈ C([0, 1], X0) | η is continuous, η(0) = 0 , η(1) = e}
and the mini max value for mountain pass level

γ0 = inf
η∈Γ

max
t∈[0,1]

Eλ(η(t)).

Let R = ‖e − uλ‖ and r0 > 0 be small enough such that uλ is a minimizer of

Eλ on B(uλ, r0). We distinguish between the following two cases:

(P1) “Zero altitude case” inf{Eλ(u) |u ∈ X0 , ‖u‖ = l} ≤ 0 for all l < R0.
(P2) ∃ l1 < R0 such that inf{Eλ(u) |u ∈ X0 , ||u‖ = l1} > 0.

Note that (P1) (resp. (P2)) implies that γ0 = 0 (resp. γ0 > 0). In case
where “Zero altitude case” occurs, we can construct a (PSF,γ0) sequence with
F = {‖u‖ = l} where l ≤ l0 and obtain at least a second weak solution to (P).
Precisely, we obtain the following result.
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Lemma 5.2. Suppose Case 1 holds, then for 1 < p <∞, 1 < q − 1 < p− 1 <
p∗s−1, and λ ∈ (0,Λ), there exists a weak solution vλ of (P) satisfying vλ 6= uλ.

Proof. From Theorem 1 in [16], we can guarantee the existence of a (PS)F,δ0
sequence {vn} for every r ≤ R0. From Lemma 5.1, we can conclude that the
sequence {vn} is bounded in X0 and it converges, upto a subsequence, to a
weak solution vλ of the problem (P). To prove vλ 6= uλ, it is sufficient to prove
the strong convergence of {vn} to vλ in X0. So, since vn ⇀ vλ weakly as
n → ∞, from the embedding result vn → vλ in Lk(Ω) for 1 ≤ k < p∗s, and
pointwise almost everywhere in Ω. Now, we recall the following result from [9].

‖vn‖ = ‖vn − vλ‖+ ‖vλ‖+ on(1) and

‖vn‖Lq(Ω) = ‖vn − vλ‖Lq(Ω) + ‖vλ‖Lq(Ω) + on(1).
(40)

and for all p < qk ≤ p∗s(t) such that qk → p∗s(t) as k →∞

(41)

∫
Ω

|vn|qk

|x|t
dx =

∫
Ω

|vn − vλ|p
∗
s(t)

|x|t
dx+

∫
Ω

|vλ|p
∗
s(t)

|x|t
dx+ on(1).

So, since vλ is a weak solution to the problem (P), we get

(42) ‖vλ‖p − λ|vλ|qLq(Ω) −
∫

Ω

|vλ|p
∗
s(t)

|x|t
dx = 0.

Hence, letting n→∞ we get∫
Q

|vn(x)− vn(y)|p−2(vn(x)− vn(y))((vn − vλ)(x)− (vn − vλ)(y))

|x− y|N+ps
dxdy

= λ

∫
Ω

|vn|q−2vn(vn − vλ)dx+

∫
Ω

|vn|p
∗
s(t)−2

vn
|x|t

(vn − vλ) dx+ on(1).(43)

Therefore, from Eqs. (40), (43) and Eq. (42) the following holds as n→∞

(44) ‖vn − vλ‖p = λ

∫
Ω

|vn − vλ|qdx+

∫
Ω

|vn − vλ|p
∗
s(t)

|x|t
dx+ on(1).

We now consider the following two cases:

1. Eλ(uλ) 6= Eλ(vλ),
2. Eλ(uλ) = Eλ(vλ).

In Case 1 holds, then we are through. In Case 2 holds, from Eq. (40) and (41)
we get,

(45) Eλ(vn − vλ) = Eλ(vn)− Eλ(vλ) + on(1) as n→∞.
Hence, from Eq. (42) it follows that

(46)
1

p
‖vn−vλ‖p−

λ

q
‖vn−vλ‖qLq(Ω)−

∫
Ω

|vn − vλ|p
∗
s(t)

|x|t
dx ≤ on(1) as n→∞.

Therefore, from Eq. (44) and Eq. (46), we get ‖vn−vλ‖ → 0 as n→∞. Hence
‖uλ − vλ‖ = r and vλ 6= uλ. The proof of Lemma 5.2 is now completed. �



NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES 767

Before we state the multiplicity result for Case 2, let us recall the necessary
tools for this (for more details see [9]).

Let U(x) = (1 + |x|p′)−
N−sp
p and Ut,ε(x) = ε−

N−sp
p Ut(

|x|
ε ), where ε > 0, x ∈

RN and p′ = p
p−1 . Note that Ut,ε(x) is a minimizer for St satisfying

(47) (−∆p)
sUt =

U
p∗s(t)−1
t

|x|t
weakly in RN .

Let us set,

mε,δ =
Ut,ε(δ)

Ut,ε(δ)− Ut,ε(θδ)
,

where ε, δ > 0, and θ > 1. For a fixed ε, δ > 0, set

gε,δ(k) =


0 if 0 ≤ k ≤ Ut,ε(θδ),
mp
ε,δ(k − Ut,ε(θδ)) if Ut,ε(θδ) ≤ k ≤ Ut,ε(δ),

k + Ut,ε(δ)(m
p−1
ε,δ − 1) if k ≥ Uε(δ)

and let

Gε,δ(k) =

∫ k

0

g′ε,δ(τ) dτ =


0 if 0 ≤ k ≤ Ut,ε(θδ),
mε,δ(k − Ut,ε(θδ)) if Ut,ε(θδ) ≤ k ≤ Ut,ε(δ),
k if k ≥ Ut,ε(δ).

The functions gε,δ and Gε,δ are nondecreasing and absolutely continuous. Con-
sider the radially symmetric nonincreasing function

ut,ε,δ(r) = Gε,δ(Ut,ε(r))

which satisfies

ut,ε,δ(r) =

{
Ut,ε(r) if r ≤ δ,
0 if r ≥ θδ

for all r ≥ 1. We follow here the arguments of [9, Lemma 2.10]. For each
sufficiently small ε, δ > 0, we have the following estimates for ut,ε,δ.

Lemma 5.3. There exists a constant C = C(N, p, s) > 0 such that for any
0 < 2ε ≤ δ < θ−1dist(0, ∂Ω), there holds

(48) ||ut,ε,δ||p ≤ S
N−t
ps−t
t + C(

ε

δ
)(N−sp)/(p−1),

(49)

∫
RN

u
p∗s(t)
t,ε,δ

|x|t
(x) dx ≥ S

N−t
ps−t
t − C(

ε

δ
)(N−t)/(p−1).

Moreover, for any β > 0, there exists Cβ such that

(50)

∫
RN

ut,ε,δ(x)β ≥ Cβ


εN−

N−ps
p β | log( εδ )| if β =

p∗s
p′ ,

ε
N−ps
p(p−1)

βδN−
N−ps
p(p−1)

β if β <
p∗s
p′ ,

εN−
N−ps
p β if β >

p∗s
p′ .
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Also, we have the following estimates cf. [9, Lemma 2.11].

Lemma 5.4. For any β > 0, there exists Cβ such that for any 0 < 2ε ≤ δ <
θ−1dist(0, ∂Ω), there holds

(51)

∫
RN

ut,ε,δ(x)β ≤ Cβ


εN−

N−ps
p β | log( εδ )| if β =

p∗s
p′ ,

ε
N−ps
p(p−1)

βδN−
N−ps
p(p−1)

β if β <
p∗s
p′ ,

εN−
N−ps
p β if β >

p∗s
p′ .

We now prove the following Lemma, when Case 2 holds.

Lemma 5.5. Suppose Case 2 holds, then for 1 < p <∞, 1 < q − 1 < p− 1 <
p∗s − 1, and λ ∈ (0,Λ), there exists a weak solution vλ of the problem (P) such
that vλ 6= uλ.

Proof. From Yang [36], we know that the condition of Palais Smale is satisfied
if

(52) γ0 < Eλ(uλ) +
sp− t
p(N − t)

S
N−t
sp−t ,

where St is the best Sobolev constant.

Claim. sup
0≤k≤ 1

2

Eλ(uλ + kR0ut,ε,δ) < Eλ(uλ) + sp−t
p(N−t)S

N−t
sp−t .

At first, using the approach as in Garćıa Azorero and Peral [12] where the
following estimate is proved (see pp. 946 and 949 in [12]):∫

Ω

|uλ + kR0ut,ε,δ|p
∗
s(t)

|x|t
dx(53)

≥
∫

Ω

|uλ|p
∗
s(t)

|x|t
dx+

(kR0)p
∗
s(t)

p∗s(t)

∫
Ω

|ut,ε,δ|p
∗
s(t)

|x|t
dx

+ (p∗s(t))kR0

∫
Ω

|uλ|p
∗
s(t)−2uλut,ε,δ
|x|t

dx

+ (p∗s(t))(kR0)p
∗
s(t)−1

∫
Ω

uλ|ut,ε,δ|p
∗
s(t)−2ut,ε,δ
|x|t

dx+O(εα)

with α > (N−sp)
p . Moreover, the following estimate is proved (see Proposition

3.2 in [24]):∫
Q

|(uλ + kR0ut,ε,δ)(x)− (uλ + kR0ut,ε,δ)(y)|p

|x− y|N+sp
dxdy(54)

≤
∫
Q

|uλ(x)− uλ(y)|p

|x− y|N+sp
dxdy +

(kR0)p

p

∫
Q

|ut,ε,δ(x)− ut,ε,δ(y)|p

|x− y|N+sp
dxdy.

Finally, we follow here the arguments of Tarantello [33]. Let R0 ≥ 1 and
consider any k ∈ [0, 1]; then for a suitable β ∈ (0, q) it follows that∣∣∣∣∫

Ω

|uλ + kR0ut,ε,δ|qdx−
∫

Ω

|uλ|qdx− (tR0)q
∫

Ω

|ut,ε,δ|qdx
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−qR0k

∫
Ω

|uλ|q−2uλUt,εdx− q(kR0)q−1

∫
Ω

|Uq−2
t,ε Ut,εuλdx

∣∣∣∣(55)

= Rβ0 o(ε
N−sp
p ).

Therefore, using Eqs. (53)-(54) and Eq. (55), we get

Eλ(uλ + kR0ut,ε,δ)

(56)

=
1

p

∫
Q

|(uλ + kR0ut,ε,δ)(x)− (uλ + kR0ut,ε,δ)(y)|p

|x− y|N+sp
dxdy

− λ

q

∫
Ω

|uλ + kR0ut,ε,δ|q dx− 1

p∗s(t)

∫
Ω

|uλ + kR0ut,ε|p
∗
s(t)

|x|t
dx

≤
∫
Q

|uλ(x)− uλ(y)|p

|x− y|N+sp
dxdy +

(kR0)p

p

∫
Q

|ut,ε,δ(x)− ut,ε,δ(y)|p

|x− y|N+sp
dxdy

− λ(kR0)q

q

∫
Ω

|ut,ε,δ|q dx− λ(kR0)q−1

∫
Ω

uλ|ut,ε,δ|q−2ut,ε,δ dx

+ λkR0

∫
Ω

|uλ|q−2uλut,ε,δ dx+ kR0

∫
Ω

(
λ|uλ|q−2uλ +

|uλ|p
∗
s(t)

|x|t

)
ut,ε,δ dx

− (kR0)p
∗
s(t)

p∗s(t)

∫
Ω

|ut,ε,δ|p
∗
s(t)

|x|t
dx

+ p∗s(t)kR0

∫
Ω

|uλ|p
∗
s(t)−2uλut,ε,δ
|x|t

dx

− (kR0)p
∗
s(t)−1

∫
Ω

uλ|ut,ε,δ|p
∗
s(t)−2ut,ε,δ
|x|t

dx+ o(ε
N−sp
p )

≤ Eλ(uλ) + (kR0)p
∫
Q

|ut,ε,δ(x)− ut,ε,δ(y)|p

|x− y|N+sp
dx dy

− (kR0)p
∗
s(t)

p∗s(t)

∫
Ω

|ut,ε,δ|p
∗
s(t)

|x|t
dx− (kR0)p

∗
s(t)−1

∫
Ω

uλ|ut,ε,δ|p
∗
s(t)−2ut,ε,δ
|x|t

dx

+ p∗s(t)kR0

∫
Ω

|uλ|p
∗
s(t)−2uλut,ε,δ
|x|t

dx

− λ(kR0)q

q

∫
Ω

|ut,ε,δ|q dx− λ(kR0)q−1

∫
Ω

uλ|ut,ε,δ|q−2ut,ε,δ dx

+ λkR0

∫
Ω

|uλ|q−2uλut,ε,δ dx+ o(ε
N−sp
p ).

Hence, from Eq. (53) and Eq. (55), it follows that

Eλ(uλ + kR0ut,ε,δ)

≤ Eλ(uλ) +
(kR0)p

p

∫
Q

|uε,δ(x)− ut,ε,δ(y)|p

|x− y|N+sp
dxdy
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− (kR0)p
∗
s(t)

p∗s(t)

∫
Ω

|ut,ε,δ|p
∗
s(t)

|x|t
dxdx

− (kR0)p
∗
s(t)−1

∫
Ω

uλ|ut,ε,δ|p
∗
s(t)−2ut,ε,δ
|x|t

dx+ o(ε
N−sp
p ).

Arguing as in Garćıa Azorero and Peral [12] (see p. 947), and using Eqs. (48)-
(49) and Eq. (50) we get:

sup
0≤k≤ 1

2

Eλ(uλ + kR0ut,ε,δ) < Eλ(uλ) +
sp− t
p(N − t)

S
N−t
sp−t

which completes the proof of the claim. Now, the compactness of {vn} implies
that Eλ(vλ) = γ0 > Eλ(uλ). Therefore vλ 6= uλ. Thus, the proof of Lemma
5.5 is now completed. �

6. Regularity of solutions

This section is devoted to presented some regularity properties to the weak
solutions of the problem (P). We will use an adaptation of the classical Moser
iteration technique to prove a priori bounds for the bounded weak solutions of
the problem (P). Firstly, let us recall some elementary inequality that we use
to proof the L∞ estimate. We begin by the following elementary inequality
proved in [3].

Lemma 6.1 (Lemma C.2 in [3]). Let 1 < p < ∞ and β ≥ 1. For every
a, b,M ≥ 0 there holds

|a− b|p−2(a− b)(aβM − b
β
M ) ≥ βpp

(β + p− 1)p

∣∣∣∣a β+p−1
p

M − b
β+p−1
p

M

∣∣∣∣ ,
where we set aM = min{a,M} and bM = min{b,M}.

Lemma 6.2 (Lemma C.3 in [4]). Let 1 < p < ∞ and g : R → R be an
increasing function. Then we have

|G(a)−G(b)|p ≤ |a− b|p−2(a− b)(g(a)− g(b)),

where G(t) =
∫ t

0
g′(τ)

1
p , for t ∈ R.

Theorem 6.3. Let u be a weak solution of (P). Then u ∈ L∞(Ω).

Proof. The proof is adopted from [4]. Let us define uk = min{(u− 1)+, k} for
k > 0, β ≥ 1, and consider the non-decreasing function Φ = (uk + ρ)β − ρβ for
ρ > 0. Using Lemma 6.1 combine with the triangle inequality and testing the
equation in the problem (P) with Φ ∈ X0, we get

βpp

(β + p− 1)p

∫
R2N

∣∣∣∣u β+p−1
p

k (x)− u
β+p−1
p

k (y)

∣∣∣∣ dx dy

(57)

≤
∫
R2N

||u(x)|−|u(y)||p−2(|u(x)|−|u(y)|)((uk(x)+ρ)β−(uk(y)+ρ)β)

|x−y|N+sp
dxdy



NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES 771

≤
∫

Ω

λ|u|q−2u((uk + ρ)β − ρβ) dx+

∫
Ω

|u|p∗s(t)−2u

|x|t
((uk + ρ)β − ρβ) dx.

Now, using the support of uk and using the Hölder inequality, we obtain

∫
Ω

λ|u|q−2u((uk + ρ)β − ρβ) dx+

∫
Ω

|u|p∗s(t)−2u

|x|t
((uk + ρ)β − ρβ) dx

(58)

=

∫
u≥1

λ|u|q−2u((uk + ρ)β − ρβ) dx+

∫
u≥1

|u|p∗s(t)−2u

|x|t
((uk + ρ)β − ρβ) dx

≤ C1

∫
u≥1

(1 +
|u|p∗s(t)−2u

|x|t
)((uk + ρ)β − ρβ) dx

≤ 2C1

∫
u≥1

|u|p∗s(t)−2u

|x|t
((uk + ρ)β − ρβ) dx

≤ 2C1|u|
p∗s(t)−1
p∗s

|(uk + ρ)β |p′ ,

where C1 = max{λ, 1} and with p′ = p∗s/(p
∗
s + 1− p∗s(t)).

On the other hand, from Theorem 1 in [25], we have∫
R2N

∣∣∣(uk(x) + ρ)
β+p−1
p − (uk(y) + ρ)

β+p−1
p

∣∣∣p dx dy

≥ CN,p,s

(∫
RN

(
(uk(x) + ρ)

β+p−1
p − ρ

β+p−1
p

) Np
N−sp

dx
) Np
N−sp

.(59)

Now, let us recall the following inequality

(60) (uk + ρ)β ≤ (uk + ρ)β+p−1ρ1−p.

So, combine the inequality (60) with the triangle inequality, we get

(∫
RN

(
(uk(x) + ρ)

β+p−1
p − ρ

β+p−1
p

) Np
N−sp

dx
) Np
N−sp

(61)

≥
(ρ

2

)p−1

CN,p,s

(∫
RN

(
(uk(x) + ρ)

β+p−1
p

) Np
N−sp

dx

)N−sp
N

− ρβ+p−1|Ω|
Np
N−sp .

Therefore, from Equations (58)-(61), we obtain(∫
RN

(
(uk(x) + ρ)

β+p−1
p

) Np
N−sp

dx

)N−sp
N

≤ CN,p,s
|u|p

∗
s(t)−1
p∗s
β

(
β + p− 1

pρ
p−1
p

)p−1

|(uk + ρ)β |p′ + ρβ |Ω|
N−sp
Np .
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Moreover, observing that for β ≥ 1, we have

(62)
βpp

(β + p− 1)p
≥
(

p

β + p− 1

)p−1

.

Therefore, from estimate (62), it is easy to check

ρβ |Ω|
N−sp
Np ≤ 1

β
(
β + p− 1

p
)p|Ω|1−

1
p′−

sp
N |(uk + ρ)β |p′ .

Thus, it follows that(∫
RN

(
(uk(x) + ρ)

β+p−1
p

) Np
N−sp

dx

)N−sp
N

(63)

≤ CN,p,s

(
β + p− 1

pρ
p−1
p

)p−1

|(uk + ρ)β |p′ ×

 |u|p∗s(t)−1
p∗s

ρp−1
+ |Ω|1−

1
p′−

sp
N

 .

Then, choose ρ > 0 by

ρ =

(
|u|

p∗s (t)−1

p−1

p∗s
+ |Ω|

1
p−1 (1− 1

p′−
sp
N )

)
.

Let us now set v = βp′ and τ = N
N−sp

1
p′ > 1, then the inequality (63) can be

written as(∫
Ω

(uk(x) + ρ)vτ dx

) 1
vτ

(64)

≤
(
CN,p,s|Ω|1−

1
p′−

sp
N

) p′
v

(
p′

v

) p′
v
(

v + p′p− p′

q′p

) pp′
v

|(uk + ρ)|vp′ .

We want to iterate the inequality (64), by taking the following sequence {vm}
of exponents

v0 = 1 vm+1 = vmτ = τm+1.

Therefore, by starting from m = 0 at the step m, the inequality (64) can be
written as

|(uk+ρ)|vm+1(65)

≤
(
CN,p,s|Ω|1−

1
p′−

sp
N

)∑m
i=0

p′
vi

Πm
i=0

(
p′

vi

) p′
vi
(

vi+p
′p−p′

q′p

) pp′
vi

|(uk+ρ)|v .

We now observe that vm diverges at infinity and in addition∑
m=0

∞ 1

vm
=
∑
m=0

∞ 1

τm
=

τ

τ − 1
and

∞∏
m=0

(
p′

vm

) p′
vm
(

v + p′p− p′

q′p

) pp′
v

< +∞.
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Iterating inequality (65) infinitely many times, we finally obtain

|(uk + β)|L∞ ≤
(
CN,p,s|Ω|1−

1
p′−

sp
N

)p′ τ
τ−1 |(uk + β)|p′ .

Since uk ≤ (u− 1)+, we get

|(uk + β)|L∞ ≤
(
CN,p,s|Ω|1−

1
p′−

sp
N

)p′ τ
τ−1

(
|(uk − 1)+|p′ + ρ|Ω|

1
p′
)
.

Now, letting k →∞, we get

|(u− 1)+|L∞ ≤
(
CN,p,s|Ω|1−

1
p′−

sp
N

)p′ τ
τ−1

(
|(uk − 1)+|p′ + ρ|Ω|

1
p′
)
.

Then, providing in the end u is uniformly bounded in L∞(Ω). Which concludes
the proof of Lemma 6.3. �

Now by the regularity results of Iannizzotto-Mosconi-Squassina (Theorem
1.1 in [21]), we obtain the following uniform C1,α estimate.

Theorem 6.4. Let u be a weak solution of the problem (P). Then there exists
constants α ∈ (0, s), M > 0 such that

‖u‖C1,α(Ω) ≤M.
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