Browse > Article
http://dx.doi.org/10.4134/JKMS.j190367

REGULARITY AND MULTIPLICITY OF SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES  

Alotaibi, Sarah Rsheed Mohamed (Department of Mathematics College of Sciences at Dammam University of Imam Abdulrahman Bin Faisal)
Saoudi, Kamel (Department of Mathematics College of Sciences at Dammam University of Imam Abdulrahman Bin Faisal)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.3, 2020 , pp. 747-775 More about this Journal
Abstract
In this work we investigate the nonlocal elliptic equation with critical Hardy-Sobolev exponents as follows, $$(P)\;\{(-{\Delta}_p)^su={\lambda}{\mid}u{\mid}^{q-2}u+{\frac{{\mid}u{\mid}^{p{^*_s}(t)-2}u}{{\mid}x{\mid}^t}}{\hspace{10}}in\;{\Omega},\\u=0{\hspace{217}}in\;{\mathbb{R}}^N{\backslash}{\Omega},$$ where Ω ⊂ ℝN is an open bounded domain with Lipschitz boundary, 0 < s < 1, λ > 0 is a parameter, 0 < t < sp < N, 1 < q < p < ps where $p^*_s={\frac{N_p}{N-sp}}$, $p^*_s(t)={\frac{p(N-t)}{N-sp}}$, are the fractional critical Sobolev and Hardy-Sobolev exponents respectively. The fractional p-laplacian (-∆p)su with s ∈ (0, 1) is the nonlinear nonlocal operator defined on smooth functions by $\displaystyle(-{\Delta}_p)^su(x)=2{\lim_{{\epsilon}{\searrow}0}}\int{_{{\mathbb{R}}^N{\backslash}{B_{\epsilon}}}}\;\frac{{\mid}u(x)-u(y){\mid}^{p-2}(u(x)-u(y))}{{\mid}x-y{\mid}^{N+ps}}dy$, x ∈ ℝN. The main goal of this work is to show how the usual variational methods and some analysis techniques can be extended to deal with nonlocal problems involving Sobolev and Hardy nonlinearities. We also prove that for some α ∈ (0, 1), the weak solution to the problem (P) is in C1,α(${\bar{\Omega}}$).
Keywords
Nonlocal elliptic problems with Sobolev and Hardy nonlinearities; variational methods; multiple positive solutions; regularity of solutions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Chen, S. Mosconi, and M. Squassina, Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal. 275 (2018), no. 11, 3065-3114. https://doi.org/10.1016/j.jfa.2018.02.020   DOI
2 A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), no. 1, 225-236. https://doi.org/10.1016/j.jmaa.2004.03.034   DOI
3 D. G. de Figueiredo, J.-P. Gossez, and P. Ubilla, Local \superlinearity" and \sublinearity" for the p-Laplacian, J. Funct. Anal. 257 (2009), no. 3, 721-752. https://doi.org/10.1016/j.jfa.2009.04.001   DOI
4 J. Garcia Azorero and I. Peral Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), no. 3, 941-957. https://doi.org/10.1512/iumj.1994.43.43041   DOI
5 J. P. Garcia Azorero, I. Peral Alonso, and J. J. Manfredi, Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), no. 3, 385-404.   DOI
6 A. Ghanmi and K. Saoudi, The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator, Fract. Differ. Calc. 6 (2016), no. 2, 201-217. https://doi.org/10.7153/fdc-06-13
7 A. Ghanmi and K. Saoudi, A multiplicity results for a singular problem involving the fractional p-Laplacian operator, Complex Var. Elliptic Equ. 61 (2016), no. 9, 1199-1216. https://doi.org/10.1080/17476933.2016.1154548   DOI
8 N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincare Anal. Non Lineaire 6 (1989), no. 5, 321-330.   DOI
9 N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5703-5743. https://doi.org/10.1090/S0002-9947-00-02560-5   DOI
10 J. Giacomoni and K. Saoudi, $W^-1}_-0}^-,p}\;versus\;C^1$ local minimizers for a singular and critical functional, J. Math. Anal. Appl. 363 (2010), no. 2, 697-710. https://doi.org/10.1016/j.jmaa.2009.10.012   DOI
11 R.-T. Jiang and C.-L. Tang, Semilinear elliptic problems involving Hardy-Sobolev-Maz'ya potential and Hardy-Sobolev critical exponents, Electron. J. Differential Equations 2016 (2016), Paper No. 12, 8 pp.
12 T.-S. Hsu, Multiple positive solutions for a quasilinear elliptic problem involving critical Sobolev-Hardy exponents and concave-convex nonlinearities, Nonlinear Anal. 74 (2011), no. 12, 3934-3944. https://doi.org/10.1016/j.na.2011.02.036   DOI
13 A. Iannizzotto, S. Liu, K. Perera, and M. Squassina, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. 9 (2016), no. 2, 101-125. https://doi.org/10.1515/acv-2014-0024   DOI
14 A. Iannizzotto, S. Mosconi, and M. Squassina, Global Holder regularity for the fractional p-Laplacian, Rev. Mat. Iberoam. 32 (2016), no. 4, 1353-1392.   DOI
15 K. Perera, M. Squassina, and Y. Yang, Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr. 289 (2016), no. 2-3, 332-342. https://doi.org/10.1002/mana.201400259   DOI
16 S. Liang and J. Zhang, Multiplicity of solutions for a class of quasi-linear elliptic equation involving the critical Sobolev and Hardy exponents, NoDEA Nonlinear Differential Equations Appl. 17 (2010), no. 1, 55-67. https://doi.org/10.1007/s00030-009-0039-4   DOI
17 S. Mosconi, K. Perera, M. Squassina, and Yang Yang, The Brezis-Nirenberg problem for the fractional p-Laplacian, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 105, 25 pp. https://doi.org/10.1007/s00526-016-1035-2
18 E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004   DOI
19 K. Perera and W. Zou, p-Laplacian problems involving critical Hardy-Sobolev exponents, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 3, Art. 25, 16 pp. https://doi.org/10.1007/s00030-018-0517-7
20 K. Saoudi, On $W^-s,p}\;vs.\;C^1$ local minimizers for a critical functional related to fractional p-Laplacian, Appl. Anal. 96 (2017), no. 9, 1586-1595. https://doi.org/10.1080/00036811.2017.1307964   DOI
21 K. Saoudi, A critical fractional elliptic equation with singular nonlinearities, Fract. Calc. Appl. Anal. 20 (2017), no. 6, 1507-1530. https://doi.org/10.1515/fca-2017-0079   DOI
22 K. Saoudi and M. Kratou, Existence of multiple solutions for a singular and quasilinear equation, Complex Var. Elliptic Equ. 60 (2015), no. 7, 893-925. https://doi.org/10.1080/17476933.2014.981169   DOI
23 C.Wang and Y.-Y. Shang, Existence and multiplicity of positive solutions for a perturbed semilinear elliptic equation with two Hardy-Sobolev critical exponents, J. Math. Anal. Appl. 451 (2017), no. 2, 1198-1215. https://doi.org/10.1016/j.jmaa.2017.02.063   DOI
24 R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), no. 2, 887-898. https://doi.org/10.1016/j.jmaa.2011.12.032   DOI
25 R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 2105-2137. https://doi.org/10.3934/dcds.2013.33.2105   DOI
26 G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincare Anal. Non Lineaire 9 (1992), no. 3, 281-304. https://doi.org/10.1016/S0294-1449(16)30238-4   DOI
27 L. Wang, Q. Wei, and D. Kang, Multiple positive solutions for p-Laplace elliptic equations involving concave-convex nonlinearities and a Hardy-type term, Nonlinear Anal. 74 (2011), no. 2, 626-638. https://doi.org/10.1016/j.na.2010.09.017   DOI
28 Y. Yang, The brezis Nirenberg problem for the fractional p-laplacian involving critical hardy sobolev exponents, https://arxiv.org/abs/1710.04654.
29 D. Averna, S. Tersian, and E. Tornatore, On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations, Fract. Calc. Appl. Anal. 19 (2016), no. 1, 253-266. https://doi.org/10.1515/fca-2016-0014   DOI
30 D. Applebaum, Levy processes and stochastic calculus, second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. https://doi.org/10.1017/CBO9780511809781
31 L. Brasco, E. Lindgren, and E. Parini, The fractional Cheeger problem, Interfaces Free Bound. 16 (2014), no. 3, 419-458. https://doi.org/10.4171/IFB/325   DOI
32 L. Brasco and E. Parini, The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var. 9 (2016), no. 4, 323-355. https://doi.org/10.1515/acv-2015-0007   DOI
33 H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490. https://doi.org/10.2307/2044999   DOI
34 H. Brezis and L. Nirenberg, $H^1\;versus\;C^1$ local minimizers, C. R. Acad. Sci. Paris Ser. I Math. 317 (1993), no. 5, 465-472.
35 F. Brock, L. Iturriaga, and P. Ubilla, A multiplicity result for the p-Laplacian involving a parameter, Ann. Henri Poincare 9 (2008), no. 7, 1371-1386. https://doi.org/10.1007/s00023-008-0386-4   DOI
36 D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Differential Equations 205 (2004), no. 2, 521-537. https://doi.org/10.1016/j.jde.2004.03.005   DOI