• Title/Summary/Keyword: $s_{\infty}$-convergence

Search Result 40, Processing Time 0.021 seconds

ON A GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION AND STATISTICAL CONVERGENCE

  • Bataineh Ahmad H.A.
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.261-272
    • /
    • 2006
  • In this paper, we define the sequence spaces: $[V,{\lambda},f,p]_0({\Delta}^r,E,u),\;[V,{\lambda},f,p]_1({\Delta}^r,E,u),\;[V,{\lambda},f,p]_{\infty}({\Delta}^r,E,u),\;S_{\lambda}({\Delta}^r,E,u),\;and\;S_{{\lambda}0}({\Delta}^r,E,u)$, where E is any Banach space, and u = ($u_k$) be any sequence such that $u_k\;{\neq}\;0$ for any k , examine them and give various properties and inclusion relations on these spaces. We also show that the space $S_{\lambda}({\Delta}^r, E, u)$ may be represented as a $[V,{\lambda}, f, p]_1({\Delta}^r, E, u)$ space. These are generalizations of those defined and studied by M. Et., Y. Altin and H. Altinok [7].

On the Strong Law of Large Numbers for Arbitrary Random Variables

  • Nam, Eun-Woo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.49-54
    • /
    • 2002
  • For arbitrary random variables {$X_{n},n{\geq}1$}, the order of growth of the series. $S_{n}\;=\;{\sum}_{j=1}^n\;X_{j}$ is studied in this paper. More specifically, when the series S_{n}$ diverges almost surely, the strong law of large numbers $S_{n}/g_{n}^{-1}$($A_{n}{\psi}(A_{n}))\;{\rightarrow}\;0$ a.s. is constructed by extending the results of Petrov (1973). On the other hand, if the series $S_{n}$ converges almost surely to a random variable S, then the tail series $T_{n}\;=\;S\;-\;S_{n-1}\;=\;{\sum}_{j=n}^{\infty}\;X_{j}$ is a well-defined sequence of random variables and converges to 0 almost surely. For the almost surely convergent series $S_{n}$, a tail series strong law of large numbers $T_{n}/g_{n}^{-1}(B_{n}{\psi}^{\ast}(B_{n}^{-1}))\;{\rightarrow}\;0$ a.s., which generalizes the result of Klesov (1984), is also established by investigating the duality between the limiting behavior of partial sums and that of tail series. In particular, an example is provided showing that the current work can prevail despite the fact that previous tail series strong law of large numbers does not work.

  • PDF

LONG-TIME PROPERTIES OF PREY-PREDATOR SYSTEM WITH CROSS-DIFFUSION

  • Shim Seong-A
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.293-320
    • /
    • 2006
  • Using calculus inequalities and embedding theorems in $R^1$, we establish $W^1_2$-estimates for the solutions of prey-predator population model with cross-diffusion and self-diffusion terms. Two cases are considered; (i) $d_1\;=\;d_2,\;{\alpha}_{12}\;=\;{\alpha}_{21}\;=\;0$, and (ii) $0\;<\;{\alpha}_{21}\;<\;8_{\alpha}_{11},\;0\;<\;{\alpha}_{12}\;<\;8_{\alpha}_{22}$. It is proved that solutions are bounded uniformly pointwise, and that the uniform bounds remain independent of the growth of the diffusion coefficient in the system. Also, convergence results are obtained when $t\;{\to}\;{\infty}$ via suitable Liapunov functionals.

On Some New Generalized Di erence Statistically Convergen Sequence Spaces De ned by a Sequence of Orlicz Function

  • Bekt, Cigdem Asma;Atici, Gulcan
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • In this paper we introduce the new generalized difference sequence space $\ell_\infty$($\Delta_v^n$, M,p,q,s), $\bar{c}$($\Delta_v^n$,M,p,q,s), $\bar{c_0}$($\Delta_v^n$,M,p,q,s), m($\Delta_v^n$,M,p,q,s) and $m_0$($\Delta_v^n$,M,p,q,s) defined over a seminormed sequence space (X,q). We study some of it properties, like completeness, solidity, symmetricity etc. We obtain some relations between these spaces as well as prove some inclusion result.

$L^{\infty}$-CONVERGENCE OF MIXED FINITE ELEMENT METHOD FOR LAPLACIAN OPERATOR

  • Chen, Huan-Zhen;Jiang, Zi-Wen
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.61-82
    • /
    • 2000
  • In this paper two so-called regularized Green's functions are introduced to derive the optimal maximum norm error estimates for the unknown function and the adjoint vector-valued function for mixed finite element methods of Laplacian operator. One contribution of the paper is a demonstration of how the boundedness of $L^1$-norm estimate for the second Green's function ${\lambda}_2$ and the optimal maximum norm error estimate for the adjoint vector-valued function are proved. These results are seemed to be to be new in the literature of the mixed finite element methods.

On Convergence in p-Mean of Randomly Indexed Partial Sums and Some First Passage Times for Random Variables Which Are Dependent or Non-identically Distributed

  • Hong, Dug-Hun
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.175-183
    • /
    • 1996
  • Let $S_n,n$ = 1, 2,... denote the partial sums of not necessarily in-dependent random variables. Let N(c) = min${ n ; S_n > c}$, c $\geq$ 0. Theorem 2 states that N (c), (suitably normalized), tends to 0 in p-mean, 1 $\leq$ p < 2, as c longrightarrow $\infty$ under mild conditions, which generalizes earlier result by Gut(1974). The proof follows by applying Theorem 1, which generalizes the known result $E$\mid$S_n$\mid$^p$ = o(n), 0 < p< 2, as n .rarw..inf. to randomly indexed partial sums.

  • PDF

Distribution of the Estimator for Peak of a Regression Function Using the Concomitants of Extreme Oder Statistics

  • Kim, S.H;Kim, T.S.
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.855-868
    • /
    • 1998
  • For a random sample of size n from general linear model, $Y_i= heta(X_i)+varepsilon_i,;let Y_{in}$ denote the ith oder statistics of the Y sample values. The X-value associated with $Y_{in}$ is denoted by $X_{[in]}$ and is called the concomitant of ith order statistics. The estimator of the location of a maximum of a regression function, $ heta$($\chi$), was proposed by (equation omitted) and was found the convergence rate of it under certain weak assumptions on $ heta$. We will discuss the asymptotic distributions of both $ heta(X_{〔n-r+1〕}$) and (equation omitted) when r is fixed as nolongrightarrow$\infty$(i.e. extreme case) on the basis of the theorem of the concomitants of order statistics. And the will investigate the asymptotic behavior of Max{$\theta$( $X_{〔n-r+1:n〕/}$ ), . , $\theta$( $X_{〔n:n〕}$)}as an estimator for the peak of a regression function.

  • PDF

A GENERAL VISCOSITY APPROXIMATION METHOD OF FIXED POINT SOLUTIONS OF VARIATIONAL INEQUALITIES FOR NONEXPANSIVE SEMIGROUPS IN HILBERT SPACES

  • Plubtieng, Somyot;Wangkeeree, Rattanaporn
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.717-728
    • /
    • 2008
  • Let H be a real Hilbert space and S = {T(s) : $0\;{\leq}\;s\;<\;{\infty}$} be a nonexpansive semigroup on H such that $F(S)\;{\neq}\;{\emptyset}$ For a contraction f with coefficient 0 < $\alpha$ < 1, a strongly positive bounded linear operator A with coefficient $\bar{\gamma}$ > 0. Let 0 < $\gamma$ < $\frac{\bar{\gamma}}{\alpha}$. It is proved that the sequences {$x_t$} and {$x_n$} generated by the iterative method $$x_t\;=\;t{\gamma}f(x_t)\;+\;(I\;-\;tA){\frac{1}{{\lambda}_t}}\;{\int_0}^{{\lambda}_t}\;T(s){x_t}ds,$$ and $$x_{n+1}\;=\;{\alpha}_n{\gamma}f(x_n)\;+\;(I\;-\;{\alpha}_nA)\frac{1}{t_n}\;{\int_0}^{t_n}\;T(s){x_n}ds,$$ where {t}, {${\alpha}_n$} $\subset$ (0, 1) and {${\lambda}_t$}, {$t_n$} are positive real divergent sequences, converges strongly to a common fixed point $\tilde{x}\;{\in}\;F(S)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)\tilde{x},\;x\;-\;\tilde{x}{\rangle}\;{\leq}\;0$ for $x\;{\in}\;F(S)$.

MULTIPLICITY OF SOLUTIONS FOR QUASILINEAR SCHRÖDINGER TYPE EQUATIONS WITH THE CONCAVE-CONVEX NONLINEARITIES

  • Kim, In Hyoun;Kim, Yun-Ho;Li, Chenshuo;Park, Kisoeb
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1461-1484
    • /
    • 2021
  • We deal with the following elliptic equations: $\{-div({\varphi}^{\prime}(\left|{\nabla}z\right|^2){\nabla}z)+V(x)\left|z\right|^{{\alpha}-2}z={\lambda}{\rho}(x)\left|z\right|^{r-2}z+h(x,z),\\z(x){\rightarrow}0,\;as\;\left|x\right|{\rightarrow}{\infty},$ in ℝN , where N ≥ 2, 1 < p < q < N, 1 < α ≤ p*q'/p', α < q, 1 < r < min{p, α}, φ(t) behaves like tq/2 for small t and tp/2 for large t, and p' and q' the conjugate exponents of p and q, respectively. Here, V : ℝN → (0, ∞) is a potential function and h : ℝN × ℝ → ℝ is a Carathéodory function. The present paper is devoted to the existence of at least two distinct nontrivial solutions to quasilinear elliptic problems of Schrödinger type, which provides a concave-convex nature to the problem. The primary tools are the well-known mountain pass theorem and a variant of Ekeland's variational principle.

Bioequivalence Evaluation of Two Cefquinome 2.5% Injectable Products in Piglets (돼지에서 두 가지 Cefquinome 2.5% 제제의 생물학적 동등성 평가)

  • Song, In-Bae;Kim, Tae-Won;Lee, Hong-Gee;Kim, Myoung-Seok;Hwang, Youn-Hwan;Park, Byung-Kwon;Lim, Jong-Hwan;Yun, Hyo-In
    • Journal of Veterinary Clinics
    • /
    • v.29 no.3
    • /
    • pp.233-236
    • /
    • 2012
  • Cefquinome, a fourth generation cephalosporin, has been solely used for veterinary medicine and has a broad antibacterial spectrum against gram-negatives and gram-positives being very stable to ${\beta}$-lactamases. This study was conducted to evaluate the bioequivalence of two cefquinome 2.5% products in piglets. Plasma cefquinome concentrations were analyzed by liquid chromatography-mass spectrometry (LC/MS). Mean maximum concentration ($C_{max}$) of test product ($Cequus^{(R)}$) and reference product ($Cobactan^{(R)}$) were $4.34{\pm}0.58$ and $4.22{\pm}0.47{\mu}g/mL$, and mean area under the concentration time curve ($AUC_{0{\rightarrow}{\infty}}$) values were $10.43{\pm}1.96$ and $10.25{\pm}2.98{\mu}g{\cdot}h/mL$, respectively. The 90% confidence intervals for the ratio of $C_{max}$ (0.941-1.115), and $AUC_{0{\rightarrow}{\infty}}$ (0.927-1.172) values for the test and reference products were within the acceptable bioequivalence limit of 0.80-1.25. It is concluded that two commercial cefquinome injectable solutions are bioequivalent in their extent of drug absorption in piglets.