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Abstract. In this paper we introduce the new generalized difference sequence spaces

`∞(∆n
v ,M, p, q, s), c(∆n

v ,M, p, q, s), c0(∆n
v ,M, p, q, s), m(∆n

v ,M, p, q, s) and

m0(∆n
v ,M, p, q, s) defined over a seminormed sequence space (X, q). We study some of its

properties, like completeness, solidity, symmetricity etc. We obtain some relations between

these spaces as well as prove some inclusion result.

1. Introduction

Throughout the article w(X), c(X), c0(X), c(X), c0(X), `∞(X), m(X) and
m0(X) will represent the spaces of all, convergent, null, statistically convergent, sta-
tistically null, bounded, bounded statistically convergent and bounded statistically
null X valued sequence spaces, where (X, q) is a seminormed space, seminormed
by q. For X = C, the space of complex numbers, these represent the corresponding
scalar valued sequence spaces. The zero sequence is denoted by θ̄ = (θ, θ, θ, ...),
where θ is the zero element of X.

The idea of statistical convergence was introduced by Fast [8] and studied by
various authors (see [2], [9], [17]).

The notion depends on the density of subsets of the set N of natural numbers.
A subset E of N is said to have density δ(E), if

δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k) exists,

where χE is the characteristic function of E.
A sequence (xk) is said to be statistically convergent to L if for every ε > 0,

δ({k ∈ N : |xk − L| ≥ ε}) = 0. We write xk
stat−→ L or stat− limxk = L.
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The notion of difference sequence space was introduced by Kizmaz [11]. It was
generalized by Et and Colak [3] as follows :

Let n be a non-negative integer. Then

X (∆n) = {x = (xk) : ∆nx ∈ X} ,

for X = c0, c and `∞, where n ∈ N, ∆0x = (xk), (∆nxk) =
(
∆n−1xk −∆n−1xk+1

)
.

Let v = (vk) be any fixed sequence of non-zero complex numbers. Et and Esi
[4] generalized the above sequence spaces to the following sequence spaces:

X (∆n
v ) = {x = (xk) : (∆n

vxk) ∈ X}

for X = `∞, c or c0, where ∆0
vx = (vkxk), (∆vxk) = (vkxk − vk+1xk+1) and

(∆n
vxk) =

(
∆n−1
v xk −∆n−1

v xk+1

)
and so that

∆n
vxk =

n∑
i=0

(−1)
i

(
n

i

)
vk+ixk+i.

An Orlicz function is a function M : [0,∞)→ [0,∞), which is continuous, non-
decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞ as
x→∞.

If the convexity of an Orlicz function M is replaced by M(x + y) ≤ M(x) +
M(y), then this function is called modulus function, introduced and investigated
by Nakano [14] and followed by Ruckle [16], Maddox [13], and many others.

Lindenstrauss and Tzafriri [12] used the idea of Orlicz function to define what
is called an Orlicz sequence space

`M =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}

which is a Banach space with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

The space `M with the norm closely related to the space `p which is an Orlicz
sequence space with M(x) = xp for 1 ≤ p <∞.

Remark 1. An Orlicz function satisfies the inequality M(λx) ≤ λM(x) for all λ
with 0 ≤ λ ≤ 1.

The following inequality will be used throughout the article. Let p = (pk) be a
positive sequence of real numbers with 0 < pk ≤ sup pk = G, D = max(1, 2G−1).
Then for all ak, bk ∈ C for all k ∈ N, we have

(1) |ak + bk|pk ≤ D{|ak|pk + |bk|pk}.
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Definition 1.1([10]). Let X be a sequence space. Then X is called:
(i) Solid (or normal), if (αkxk) ∈ X whenever (xk) ∈ X for all sequences (αk)

of scalar with |αk| ≤ 1, for all k ∈ N.
(ii) Symmetric if (xk) ∈ X implies

(
xπ(k)

)
∈ X, where π (k) is a permutation

of N.
(iii) Monotone provided X contains the canonical preimages of all its stepspace.

Lemma 1.2([10]). If a sequence space E is solid, then E is monotone.

Lemma 1.3([18]). For two sequences (pk) and (tk) we have m0(p) ⊇ m0(t) if and
only if lim infk∈K(pk/tk) > 0, where K ⊆ N such that δ(K) = 1.

Lemma 1.4([18]). Let h = inf pk and G = sup pk, then the following are equivalent:
(i) G <∞ and h > 0,
(ii) m(p) = m.

Lemma 1.5([18]). Let K = {n1, n2, ...} be an infinite subset of N such that δ(K) =
0. Let

T = {(xk) : xk = 0 or 1 for k = ni, i ∈ N and xk = 0, otherwise}.

Then T is uncountable.

2. Main results

Definition 2.1. Let M = (Mk) be a sequence of Orlicz functions, p = (pk) be any
sequence of strictly positive real numbers, s a non-negative real number and X be
a seminormed space with the seminorm q. Then we define the following sequence
spaces:

c(∆n
v ,M,p,q,s)=

{
(xk)∈w(X) : k−s[Mk(q(

∆n
vxk−L
ρ

))]pk
stat−→ 0, for some ρ> 0,L∈X

}
,

c0(∆n
v ,M,p,q,s)=

{
(xk)∈w(X) : k−s[Mk(q(

∆n
vxk
ρ

))]pk
stat−→ 0, for some ρ> 0

}
,

`∞(∆n
v ,M,p,q,s)=

{
(xk)∈w(X) : sup

k≥1
k−s[Mk(q(

∆n
vxk
ρ

))]pk <∞, for some ρ> 0

}
.

We write

m (∆n
v ,M, p, q, s) = c (∆n

v ,M, p, q, s) ∩ `∞ (∆n
v ,M, p, q, s) ,

m0 (∆n
v ,M, p, q, s) = c0 (∆n

v ,M, p, q, s) ∩ `∞ (∆n
v ,M, p, q, s) .

For pk = 1 for all k ∈ N, we write these spaces as c(∆n
v ,M, q, s), c0(∆n

v ,M, q, s),
m (∆n

v ,M, q, s), m0 (∆n
v ,M, q, s) and `∞(∆n

v ,M, q, s).
For Mk = M for all k ∈ N, we write these spaces as c(∆n

v ,M, p, q, s),
c0(∆n

v ,M, p, q, s), m (∆n
v ,M, p, q, s), m0 (∆n

v ,M, p, q, s) and `∞(∆n
v ,M, p, q, s).



392 Çiğdem Asma Bektaş and Gülcan Atici

For s = 0, Mk(x) = x for all k ∈ N and q(x) = |x|, we obtain the results of Et,
et.al [6].

Theorem 2.2. c(∆n
v ,M, p, q, s), c0(∆n

v ,M, p, q, s), m (∆n
v ,M, p, q, s) and

m0 (∆n
v ,M, p, q, s) are linear spaces.

Proof. We shall prove only for c0(∆n
v ,M, p, q, s). The other cases can be proved

similarly. Let (xk), (yy) ∈ c0(∆n
v ,M, p, q, s) and α, β ∈ C. Then there exist positive

numbers ρ1 and ρ2 such that

k−s[Mk(q(
∆n
vxk
ρ1

))]pk
stat−→ 0 as k →∞

and

k−s[Mk(q(
∆n
vyk
ρ2

))]pk
stat−→ 0 as k →∞.

Define ρ3 = max (2 |α| ρ1, 2 |β| ρ2). Since Mk are non-decreasing and convex func-
tions, q is a seminorm and ∆n

v linear, we have

k−s
[
Mk

(
q

(
∆n
v (αxk + βyk)

ρ3

))]pk
≤ Dk−s

[
Mk

(
q

(
∆n
vxk
ρ1

))]pk
+Dk−s

[
Mk

(
q

(
∆n
vyk
ρ2

))]pk
stat−→ 0,

as k →∞. This proves that c0(∆n
v ,M, p, q, s) is linear space. 2

Theorem 2.3. The spaces m0 (∆n
v ,M, p, q, s) and m (∆n

v ,M, p, q, s) are para-
normed space, paranormed by

g∆ (x) =

n∑
k=1

q (xk) + inf

{
ρ

pk
H : sup

k
k−sMk

(
q

(
∆n
vxk
ρ

))
≤ 1, ρ > 0

}
,

where H = max(1, sup pk).

Proof. Clearly g∆ (x) = g∆ (−x); x = θ̄ implies ∆n
vxk = θ and as such Mk (q(θ)) = 0.

Therefore g∆

(
θ̄
)

= 0. Now let (xk) and (yk) be in any of the spaces in the statement.
Then we have ρ1, ρ2 > 0 such that

sup
k
k−sMk

(
q

(
∆n
vxk
ρ1

))
≤ 1

and

sup
k
k−sMk

(
q

(
∆n
vyk
ρ2

))
≤ 1.



On Some New Generalized Difference Statistically Convergent Sequence Spaces 393

Let ρ = ρ1 + ρ2. Then by the convexity of Mk, we have

sup k−sMk

(
q

(
∆n
v (xk + yk)

ρ

))
≤ (

ρ1

ρ1 + ρ2
)sup
k
k−sMk

(
q

(
∆n
vxk
ρ1

))
+ (

ρ2

ρ1 + ρ2
) sup k−sMk

(
q

(
∆n
vyk
ρ2

))
≤ 1.

Hence we have,

g∆ (x+ y)

=

n∑
k=1

q (xk + yk) + inf

{
ρ

pk
H : sup

k
k−sMk

(
q

(
∆n
v (xk + yk)

ρ

))
≤ 1, ρ > 0

}

≤
n∑
k=1

q (xk) + inf

{
ρ

pk
H : sup

k
k−sMk

(
q

(
∆n
vxk
ρ

))
≤ 1, ρ > 0

}

+

n∑
k=1

q (yk) + inf

{
ρ

pk
H : sup

k
k−sMk

(
q

(
∆n
vyk
ρ

))
≤ 1, ρ > 0

}
≤ g∆ (x) + g∆ (y) .

The continuity of scalar multiplication follows from the following equality:

g∆ (λx) =

n∑
k=1

q (λxk) + inf

{
ρ

pk
H : sup

k≥1
k−sMk

(
q

(
∆n
v (λxk)

ρ

))
≤ 1, ρ > 0

}

= |λ|
n∑
k=1

q (xk) + inf

{
(r |λ|)

pk
H : sup

k≥1
k−sMk

(
q

(
∆n
vxk
r

))
≤ 1, r > 0

}
,

where r = ρ
|λ| . Hence the spaces m (∆n

v ,M, p, q, s) and m0 (∆n
v ,M, p, q, s) are para-

normed by g∆. 2

Theorem 2.4. Let (X, q) be complete seminormed space, then the spaces m0 (∆n
v ,M, p, q, s)

and m (∆n
v ,M, p, q, s) are complete.

Proof. We prove it for the case m0 (∆n
v ,M, p, q, s) and the other case can be es-

tablished similarly. Let (xi) be a Cauchy sequence in m (∆n
v ,M, p, q, s). Let δ > 0

be fixed and r > 0 be such that for a given 0 < ε < 1, ε
rδ > 0 and rδ ≥ 1. Then

g∆(xi − xs) → 0 as i, s → ∞. Then there exists a positive integer n0 such that
g∆(xi − xs) < ε

rδ , for all i, s ≥ n0.

(2)

n∑
k=1

q
(
xik−xsk

)
+inf

{
ρ

pk
H : sup

k
k−sMk

(
q

(
∆n
vx

i
k −∆n

vx
s
k

ρ

))
≤1, ρ>0

}
<
ε

rδ
,

for all i, s ≥ n0.
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From (2) we have (xik)∞i=1 is a Cauchy sequence in X for each k = 1, 2, ..., n.
Hence (xik)∞i=1 is convergent in X, for each fixed k = 1, 2, ..., n. Let

(3) lim
i→∞

xik = xk, for each k = 1, 2, ..., n.

From (2) we have

k−s
[
Mk

(
q

(
∆n
vx

i
k −∆n

vx
s
k

ρ

))]
≤M(

rδ

2
), for all i, s ≥ n0 and all k ∈ N,

⇒ q
(
∆n
vx

i
k −∆n

vx
s
k

)
< ε, for all i, s ≥ n0 and all k ∈ N.

Hence (∆n
v (xik))∞i=1 for all k ∈ N, is a Cauchy sequence in X and hence are

convergent in X. Let limi→∞∆n
vx

i
k = yk.

Now for k = 1, by (1) and (3) since limi→∞∆n
vx

i
1 = y1, we have limi→∞ xik+1 =

xk+1 exists. Proceeding in this way inductively we have limi→∞ xik = xk for each
k ∈ N.

Now using the continuity of Mk and applying the standard techniques, we have
for all i ≥ n0,

lim
s→∞

n∑
k=1

q
(
xik−xsk

)
+inf

{
ρ

pk
H : lim

s→∞
sup
k
k−sMk

(
q

(
∆n
vx

i
k−∆n

vx
s
k

ρ

))
≤1, ρ>0

}
<

2ε

rδ

⇒
n∑
k=1

q
(
xik−xk

)
+inf

{
ρ

pk
H : sup

k
k−sMk

(
q

(
∆n
vx

i
k −∆n

vxk
ρ

))
≤1, ρ>0

}
<

2ε

rδ

⇒ g∆

(
xi − x

)
<

2ε

rδ
.

Hence
(
xi − x

)
∈ m0 (∆n

v ,M, p, q, s). Since
(
xi
)
∈ m0 (∆n

v ,M, p, q, s) and

m0 (∆n
v ,M, p, q, s) is a linear space, so we have x = xi−

(
xi − x

)
∈ m0 (∆n

v ,M, p, q, s).
Hence x ∈ m0 (∆n

v ,M, p, q, s) is a closed subspace of `∞(∆n
v ,M, p, q, s). 2

Theorem 2.5. Let n ≥ 1, then for all 0 < i ≤ n, Z
(
∆i
v,M, q, s

)
⊆ Z (∆n

v ,M, q, s)
where Z = c, c0, m and m0. The inclusions are strict.

Proof. We establish it for c0
(
∆n−1
v ,M, q, s

)
⊆ c0 (∆n

v ,M, q, s). It follows from the
following inequality

k−sMk

(
q

(
∆n
vxk
ρ

))
≤ D

{
k−sMk

(
q

(
∆n−1
v xk
ρ

))
+ k−sMk

(
q

(
∆n−1
v xk+1

ρ

))}
that (xk) ∈ c0

(
∆n−1
v ,M, q, s

)
implies (xk) ∈ c0 (∆n

v ,M, q, s).

On applying the principle of induction it follows that c0
(
∆i
v,M, q, s

)
⊆

c0 (∆n
v ,M, q, s), for i = 0, 1, 2, ..., n − 1. The proof for the rest of the cases will

follow similarly. 2
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To show the inclusions are strict consider the following example.

Example 1. Let Mk (x) = x, vk = 1, for all k ∈ N, s = 0 and q (x) = |x|. Then the
sequence (xk) =

(
kn−1

)
∈ Z (∆n

v ,M, q, s) but (xk) /∈ Z
(
∆n−1
v ,M, q, s

)
for Z = c0

and m0, since ∆nxk = 0 and ∆n−1xk = (−1)n−1(n − 1)! for all k ∈ N. Under the
above restrictions, consider the sequence (xk) = (kn). Then (xk) ∈ Z (∆n

v ,M, q, s)
but (xk) /∈ Z

(
∆n−1
v ,M, q, s

)
for Z = c and m.

Theorem 2.6. Let M = (Mk) be a sequence of Orlicz functions. For any two
sequences p = (pk) and t = (tk) of positive real numbers and for any two seminorms
q1 and q2 on X we have

Z (∆n
v ,M, p, q1, s) ∩ Z (∆n

v ,M, t, q2, s) 6= ∅,

where Z = c, c0, m and m0.

Proof. The proof follows from the fact that the zero sequence belongs to each of the
classes the sequence spaces involved in the intersection. 2

The proof of the following result is easy, so omitted.

Proposition 2.7. Let M = (Mk) be a sequence of Orlicz functions, any sequence
p = (pk) of strictly positive real numbers and seminorms q, q1 and q2 on X. Then

(i) c0(∆n
v ,M, p, q, s) ⊆ c(∆n

v ,M, p, q, s),
(ii) m0(∆n

v ,M, p, q, s) ⊆ m(∆n
v ,M, p, q, s),

(iii) Z(∆n
v ,M, p, q1, s) ∩ Z(∆n

v ,M, p, q2, s) ⊆ Z(∆n
v ,M, p, q1 + q2, s), where

Z = c, c0, m and m0.
(iv) If q1 is stronger than q2, then Z(∆n

v ,M, p, q1, s) ⊆ Z(∆n
v ,M, p, q2, s), where

Z = c, c0, m and m0.

The proof of the following two theorems can be obtained from example 2, ex-
ample 3, example 4 and example 5 of Tripathy [19], on taking Mk = M and vk = 1
for all k ∈ N and s = 0.

Theorem 2.8. The sequence spaces Z(∆n
v ,M, p, q, s) are not solid for n > 0, where

Z = c, c0, m and m0.

Theorem 2.9. The sequence spaces Z(∆n
v ,M, p, q, s) are not symmetric for n > 0,

where Z = c, c0, m and m0.

Proposition 2.10. For two sequences (pk) and (tk) we have m0(∆n
v ,M, t, q, s) ⊆

m0(∆n
v ,M, p, q, s) if and only if lim infk∈K

pk
tk

> 0, where K ⊆ N such that

δ(K) = 1.

Proof. The proof is obvious in view of Lemma 1.3. 2

The following result is a consequence of the above result.

Corollary 2.11. For two sequences (pk) and (tk) we have m0(∆n
v ,M, t, q, s) =
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m0(∆n
v ,M, p, q, s) if and only if lim infk∈K

pk
tk

> 0 and lim infk∈K
tk
pk

> 0, where

K ⊆ N such that δ(K) = 1.

The following result is obvious in view of Lemma 1.4.

Proposition 2.12. Let h = inf pk and G = sup pk, then the followings are equiva-
lent:

(i) G <∞ and h > 0,
(ii) m(∆n

v ,M, p, q, s) = m(∆n
v ,M, q, s).

Since the inclusion relations m(∆n
v ,M, p, q, s) ⊂ `∞(∆n

v ,M, p, q, s)
and m0(∆n

v ,M, p, q, s) ⊂ `∞(∆n
v ,M, p, q, s) are strict, we have the following result.

Corollary 2.13. The spaces m(∆n
v ,M, p, q, s) and m0(∆n

v ,M, p, q, s) are nowhere
dense subsets of `∞(∆n

v ,M, p, q, s).

The following result is obvious in view of Lemma 1.5.

Proposition 2.14. The spaces m(∆n
v ,M, p, q, s) and m0(∆n

v ,M, p, q, s) are not
separable.

References

[1] Altın, Y., Et, M and Tripathy, B. C. The sequence space
∣∣Np

∣∣ (M, r, q, s) on semi-
normed spaces, Appl. Math. Comp., 154(2004),423-430.

[2] Connor, J. S. The statistical and strong p-Ces‘aro convergence of sequences, Analysis,
8(1988), 47-63.
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