Acknowledgement
The first author was supported by the Incheon National University Research Grant in 2017. The authors gratefully thank to the Referee for the constructive comments and recommendations which definitely help to improve the readability and quality of the paper.
References
- K. Ait-Mahiout and C. O. Alves, Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces, Complex Var. Elliptic Equ. 62 (2017), no. 6, 767-785. https://doi.org/10.1080/17476933.2016.1243669
- C. O. Alves and A. R. da Silva, Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz-Sobolev space, J. Math. Phys. 57 (2016), no. 11, 111502, 22 pp. https://doi.org/10.1063/1.4966534
- A. Ambrosetti, H. Brezis, and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543. https://doi.org/10.1006/jfan.1994.1078
- A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
- A. Azzollini, Minimum action solutions for a quasilinear equation, J. Lond. Math. Soc. (2) 92 (2015), no. 3, 583-595. https://doi.org/10.1112/jlms/jdv050
- A. Azzollini, P. d'Avenia, and A. Pomponio, Quasilinear elliptic equations in ℝN via variational methods and Orlicz-Sobolev embeddings, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 197-213. https://doi.org/10.1007/s00526-012-0578-0
- M. Badiale, L. Pisani, and S. Rolando, Sum of weighted Lebesgue spaces and nonlinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 4, 369-405. https://doi.org/10.1007/s00030-011-0100-y
- J.-H. Bae and Y.-H. Kim, Critical points theorems via the generalized Ekeland variational principle and its application to equations of p(x)-Laplace type in ℝN, Taiwanese J. Math. 23 (2019), no. 1, 193-229. https://doi.org/10.11650/tjm/181004
- G. Bonanno, G. Molica Bisci, and V. Radulescu, Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal. 74 (2011), no. 14, 4785-4795. https://doi.org/10.1016/j.na.2011.04.049
- C. Brandle, E. Colorado, A. de Pablo, and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 1, 39-71. https://doi.org/10.1017/S0308210511000175
- M. L. M. Carvalho, E. D. da Silva, and C. Goulart, Quasilinear elliptic problems with concave-convex nonlinearities, Commun. Contemp. Math. 19 (2017), no. 6, 1650050, 25 pp. https://doi.org/10.1142/S0219199716500504
- W. Chen and S. Deng, The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities, Z. Angew. Math. Phys. 66 (2015), no. 4, 1387-1400. https://doi.org/10.1007/s00033-014-0486-6
- N. Chorfi and V. D. Radulescu, Standing wave solutions of a quasilinear degenerate Schrodinger equation with unbounded potential, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 37, 12 pp. https://doi.org/10.14232/ejqtde.2016.1.37
- N. T. Chung, Existence of solutions for a class of Kirchhoff type problems in Orlicz-Sobolev spaces, Ann. Polon. Math. 113 (2015), no. 3, 283-294. https://doi.org/10.4064/ap113-3-5
- P. Clement, B. de Pagter, G. Sweers, and F. de Thelin, Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math. 1 (2004), no. 3, 241-267. https://doi.org/10.1007/s00009-004-0014-6
- P. Clement, M. Garcia-Huidobro, R. Manasevich, and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11 (2000), no. 1, 33-62. https://doi.org/10.1007/s005260050002
- E. D. da Silva, M. L. M. Carvalho, J. V. Goncalves, and C. Goulart, Critical quasilinear elliptic problems using concave-convex nonlinearities, Ann. Mat. Pura Appl. (4) 198 (2019), no. 3, 693-726. https://doi.org/10.1007/s10231-018-0794-0
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
- F. Fang and Z. Tan, Existence and multiplicity of solutions for a class of quasilinear elliptic equations: an Orlicz-Sobolev space setting, J. Math. Anal. Appl. 389 (2012), no. 1, 420-428. https://doi.org/10.1016/j.jmaa.2011.11.078
- F. Fang and Z. Tan, Existence of three solutions for quasilinear elliptic equations: an Orlicz-Sobolev space setting, Acta Math. Appl. Sin. Engl. Ser. 33 (2017), no. 2, 287-296. https://doi.org/10.1007/s10255-017-0659-0
- G. Figueiredo and J. A. Santos, Existence of least energy nodal solution with two nodal domains for a generalized Kirchhoff problem in an Orlicz-Sobolev space, Math. Nachr. 290 (2017), no. 4, 583-603. https://doi.org/10.1002/mana.201500286
- G. A. Seregin and J. Frehse, Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening, in Proceedings of the St. Petersburg Mathematical Society, Vol. V, 127-152, Amer. Math. Soc. Transl. Ser. 2, 193, Amer. Math. Soc., Providence, RI, 1999. https://doi.org/10.1090/trans2/193/06
- M. Fuchs and V. Osmolovski, Variational integrals on Orlicz-Sobolev spaces, Z. Anal. Anwendungen 17 (1998), no. 2, 393-415. https://doi.org/10.4171/ZAA/829
- M. Fuchs and G. Seregin, Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening, Math. Methods Appl. Sci. 22 (1999), no. 4, 317-351. https://doi.org/10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO;2-A
- N. Fukagai and K. Narukawa, Nonlinear eigenvalue problem for a model equation of an elastic surface, Hiroshima Math. J. 25 (1995), no. 1, 19-41. http://projecteuclid.org/euclid.hmj/1206127823 https://doi.org/10.32917/hmj/1206127823
- N. Fukagai and K. Narukawa, On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Ann. Mat. Pura Appl. (4) 186 (2007), no. 3, 539-564. https://doi.org/10.1007/s10231-006-0018-x
- J.-P. Gossez, A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, in Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983), 455-462, Proc. Sympos. Pure Math., 45, Part 1, Amer. Math. Soc., Providence, RI, 1986.
- C. He and G. Li, The existence of a nontrivial solution to the p & q-Laplacian problem with nonlinearity asymptotic to up-1 at infinity in ℝN, Nonlinear Anal. 68 (2008), 1100-1119. https://doi.org/10.1016/j.na.2006.12.008
- K. Ho and I. Sim, Existence and multiplicity of solutions for degenerate p(x)-Laplace equations involving concave-convex type nonlinearities with two parameters, Taiwanese J. Math. 19 (2015), no. 5, 1469-1493. https://doi.org/10.11650/tjm.19.2015.5187
- L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787-809. https://doi.org/10.1017/S0308210500013147
- Y.-H. Kim, Existence and multiplicity of solutions to a class of fractional p-Laplacian equations of Schrodinger type with concave-convex nonlinearities in ℝN, Mathematics 8 (2020), 1792. https://doi.org/10.3390/math8101792
- J.-M. Kim, Y.-H. Kim, and J. Lee, Radially Symmetric Solutions for Quasilinear Elliptic Equations Involving Nonhomogeneous Operators in an Orlicz-Sobolev Space Setting, Acta Math. Sci. Ser. B (Engl. Ed.) 40 (2020), no. 6, 1679-1699. https://doi.org/10.1007/s10473-020-0605-8
- I. H. Kim, Y.-H. Kim, and K. Park, Existence and multiplicity of solutions for Schrodinger-Kirchhoff type problems involving the fractional p(·)-Laplacian in ℝN, Bound. Value Probl. 2020, Paper No. 121, 24 pp. https://doi.org/10.1186/s13661-020-01419-z
- J. I. Lee and Y.-H. Kim, Multiplicity of radially symmetric small energy solutions for quasilinear elliptic equations involving nonhomogeneous operators, Mathematics 8 (2020), 128. https://doi.org/10.3390/math8010128
- J. Lee, J.-M. Kim, and Y.-H. Kim, Existence and multiplicity of solutions for Kirchhoff-Schrodinger type equations involving p(x)-Laplacian on the entire space ℝN, Nonlinear Anal. Real World Appl. 45 (2019), 620-649. https://doi.org/10.1016/j.nonrwa.2018.07.016
- S. D. Lee, K. Park, and Y.-H. Kim, Existence and multiplicity of solutions for equations involving nonhomogeneous operators of p(x)-Laplace type in ℝN, Bound. Value Probl. 2014 (2014), 261, 17 pp. https://doi.org/10.1186/s13661-014-0261-9
- M. Mihailescu and V. Radulescu, Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting, J. Math. Anal. Appl. 330 (2007), no. 1, 416-432. https://doi.org/10.1016/j.jmaa.2006.07.082
- B. T. K. Oanh and D. N. Phuong, On multiplicity solutions for a non-local fractional p-Laplace equation, Complex Var. Elliptic Equ. 65 (2020), no. 5, 801-822. https://doi.org/10.1080/17476933.2019.1631287
- P. Pucci, M. Xiang, and B. Zhang, Multiple solutions for nonhomogeneous Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian in ℝN, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2785-2806. https://doi.org/10.1007/s00526-015-0883-5
- M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991.
- M. Shao and A. Mao, Schrodinger-Poisson system with concave-convex nonlinearities, J. Math. Phys. 60 (2019), no. 6, 061504, 11 pp. https://doi.org/10.1063/1.5087490
- M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1
- T. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in ℝN involving sign-changing weight, J. Funct. Anal. 258 (2010), no. 1, 99-131. https://doi.org/10.1016/j.jfa.2009.08.005
- M. Xiang, B. Zhang, and M. Ferrara, Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities, Proc. A. 471 (2015), no. 2177, 20150034, 14 pp. https://doi.org/10.1098/rspa.2015.0034
- Q. Zhang and V. D. Radulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. (9) 118 (2018), 159-203. https://doi.org/10.1016/j.matpur.2018.06.015