• Title/Summary/Keyword: $SiN_x$ film

Search Result 336, Processing Time 0.029 seconds

Effects of Hydrogen Plasma Treatment of the Underlying TaSiN Film Surface on the Copper Nucleation in Copper MOCVD

  • Park, Hyun-Ah;Lim, Jong-Min;Lee, Chong-Mu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.435-438
    • /
    • 2004
  • MOCVD is one of the major deposition techniques for Cu thin films and Ta-Si-N is one of promising barrier metal candidates for Cu with high thermal stability. Effects of hydrogen plasma pretreatment of the underlying Ta-Si-N film surface on the Cu nucleation in Cu MOCVD were investigated using scanning electron microscopy, X-ray photoelectron spectroscopy and Auger electron emission spectrometry analyses. Cu nucleation in MOCVD is enhanced as the rf-power and the plasma exposure time are increased in the hydrogen plasma pretreatment. The optimal plasma treatment process condition is the rf-power of 40 Wand the plasma exposure time of 2 min. The hydrogen gas flow rate in the hydrogen plasma pretreatment process does not affect Cu nucleation much. The mechanism through which Cu nucleation is enhanced by the hydrogen plasma pretreatment of the Ta-Si-N film surface is that the nitrogen and oxygen atoms at the Ta-Si-N film surface are effectively removed by the plasma treatment. Consequently the chemical composition was changed from Ta-Si-N(O) into Ta-Si at the Ta-Si-N film surface, which is favorable for Cu nucleation.

Effects of the thin $SiO_2$ film on the formation of $TiN/TiSi_2$ bilayer formed by rapid thermal annealing (급속열처리에 의한 $TiN/TiSi_2$ 이중구조막 혈성에 대한 Ti-Si 계면의 얇은 산화막의 영향)

  • Lee, Cheol-Jin;Sung, Han-Young;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1223-1225
    • /
    • 1994
  • The properties of $TiN/TiSi_2$ bilayer formed by a rapid thermal anneal ing is investigated when thin $SiO_2$ film exists at the Ti-Si interface. The competitive reaction for the $TiN/TiSi_2$ bilayer occurs above $600^{\circ}C$. The thickness of the $TiSi_2$ layer decreases with increasing $SiO_2$ film thickness while the TiN layer increases at the competitive reaction. The composition of TiN layer is changed to the $TiN_xO_y$ film due to the thin $SiO_2$ layer at the Ti-Si interface while the structure of the TiN and $TiSi_2$ layers was not changed.

  • PDF

Electrical Properties of DC Sputtered Titanium Nitride Films with Different Processing Conditions and Substrates

  • Jin, Yen;Kim, Young-Gu;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.455-460
    • /
    • 2005
  • Deposition of TiN$_{x}$ film was conducted with a DC sputtering technique. The effect of the processing parameters such as substrate temperature, deposition time, working pressure, bias power, and volumetric flowing rate ratio of Ar to N$_{2}$ gas on the resistivity of TiN$_{x}$ film was systematically investigated. Three kinds of substrates, soda-lime glass, (100) Si wafer, and 111m thermally grown (111) SiO$_{2}$ wafer were used to explore the effect of substrate. The phase of TiN$_{x}$ film was analyzed by XRD peak pattern and deposition rate was determined by measuring the thickness of TiNx film through SEM cross-sectional view. Resistance was obtained by 4 point probe method as a function of processing parameters and types of substrates. Finally, optimum condition for synthesizing TiN$_{x}$ film having lowest resistivity was discussed.

Light-emitting mechanism varying in Si-rich-SiNx controlled by film's composition

  • Torchynska, Tetyana V.;Vega-Macotela, Leonardo G.;Khomenkova, Larysa;Slaoui, Abdelilah
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.261-279
    • /
    • 2017
  • Spectroscopic investigation of Si quantum dots (Si-QDs) embedded in silicon nitride was performed over a broad stoichiometry range to optimize light emission. Plasma-enhanced chemical vapor deposition was used to grow the $SiN_x$ films on Si (001) substrates. The film composition was controlled via the flow ratio of silane ($SiH_4$) and ammonia ($NH_3$) in the range of R = 0.45-1.0 allowed to vary the Si excess in the range of 21-62 at.%. The films were submitted to annealing at $1100^{\circ}C$ for 30 min in nitrogen to form the Si-QDs. The properties of as-deposited and annealed films were investigated using spectroscopic ellipsometry, Fourier transform infrared spectroscopy, Raman scattering and photoluminescence (PL) methods. Si-QDs were detected in $SiN_x$ films demonstrating the increase of sizes with Si excess. The residual amorphous Si clusters were found to be present in the films grown with Si excess higher than 50 at.%. Multi-component PL spectra at 300 K in the range of 1.5-3.5 eV were detected and nonmonotonous varying total PL peak versus Si excess was revealed. To identify the different PL components, the temperature dependence of PL spectra was investigated in the range of 20-300 K. The analysis allowed concluding that the "blue-orange" emission is due to the radiative defects in a $SiN_x$ matrix, whereas the "red" and "infrared" PL bands are caused by the exciton recombination in crystalline Si-QDs and amorphous Si clusters. The nature of radiative and no radiative defects in $SiN_x$ films is discussed. The ways to control the dominant PL emission mechanisms are proposed.

Routes to Improving Performance of Solution-Processed Organic Thin Film Transistors

  • Li, Flora M.;Hsieh, Gen-Wen;Nathan, Arokia;Beecher, Paul;Wu, Yiliang;Ong, Beng S.;Milne, William I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1051-1054
    • /
    • 2009
  • This paper investigates approaches for improving effective mobility of organic thin film transistors (OTFTs). We consider gate dielectric optimization, whereby we demonstrated >2x increase in mobility by using a silicon-rich silicon nitride ($SiN_x$) gate dielectric for polythiophene-based (PQT) OTFTs. We also engineer the dielectric-semiconductor ($SiN_x$-PQT) interface to attain a 27x increase in mobility (up to 0.22 $cm^2$/V-s) using an optimized combination of oxygen plasma and OTS SAM treatments. Augmentative material systems by combining 1-D nanomaterials (e.g., carbon nanotubes, zinc oxide nanowires) in an organic matrix for nanocomposite OTFTs provided a further boost in device performance.

  • PDF

Synthesis and Properties of CuNx Thin Film for Cu/Ceramics Bonding

  • Chwa, Sang-Ok;Kim, Keun-Soo;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.222-226
    • /
    • 1998
  • $Cu_3N$ film deposited on silicon oxide substrate by r.f. reactive sputtering technique. Synthesis and properties of copper nitride film were investigated for its possible application to Cu metallization as adhesive interlayer between copper and $SiO_2. Cu_3N$ film was synthesized at the substrate temperature ranging from $100^{\circ}C$ to $200^{\circ}C$ and at nitrogen gas ratio above $X_{N2}=0.4. Cu_3N, CuN_x$, and FGM-structured $Cu/CuN_x$ films prepared in this work passed Scotch-tape test and showed improved adhesion property to silicon oxide substrate compared with Cu film. Electrical resistivity of copper nitride film had a dependency on its lattice constant and was ranged from 10-7 to 10-1 $\Omega$cm. Copper nitride film was, however, unstable when it was annealed at the temperature above $400^{\circ}C$.

  • PDF

Effects of the thin SiO$_{2}$ film at the Ti-Si interface on the formation of TiN/TiS$i_2$ bilayer (Ti-Si 계면의 얇은 산화막이 TiN/TiS$i_2$ 이중구조막 형성에 미치는 영향)

  • 이철진;성만영;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.242-248
    • /
    • 1996
  • The properties of TiN/TiSi$_{2}$ bilayer formed by a rapid thermal annealing is investigated when thin SiO$_{2}$ film exists at the Ti-Si interface. The competitive reaction for the TiN/TiSi_2 bilayer occurs above 600 .deg. C. The thickness of the TiSi$_{2}$ layer decreases with increasing SiO$_{2}$ film thickness and also decreases with increasing anneal temperture When the competitive reaction for the TiN/TiSi$_{2}$ bilayer is occured by rapid thermal annealing, the composition of TiN layer represents TiN$_{x}$O$_{y}$ due to the SiO$_{2}$ layer at the Ti-Si interface but the structures of the TiN and TiSi$_{2}$ layers were not changed.d.d.

  • PDF

Low voltage stability of a-Si:H TFTs with $SiN_x$ dielectric films prepared by PECVD using Taguchi methods

  • Wu, Chuan-Yi;Sun, Kuo-Sheng;Cho, Shih-Chieh;Lin, Hong-Ming
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.272-275
    • /
    • 2005
  • The high stability of a-Si:H TFTs device is studied with different deposited conditions of $SiN_x$ films by PECVD. The process parameters of $N_2$, $NH_3$ gas flow rate, RF power, and pressure s of hydrogenated amorphous silicon nitride are taken into account and analyzed by Taguchi experimental design method. The $NH_3$ gas flow rate and RF power are two major factors on the average threshold voltage and the a-SiNx:H film's structure. The hydrogen contents in $SiN_x$ films were measured by FTIR using the related Si-H/N-H bonds ratio in $a-SiN_x:H$ films. After the 330,000 sec gate bias stress is applied, the threshold voltages ($V_th$) shift less than 10%. This result indicates that the highly stable a-Si:H TFTs device can be fabricated with optimum gate $SiN_x$ insulator.

  • PDF

Ultra Thin Film Encapsulation of OLED on Plastic Substrate

  • Ko Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Yang, Yong-Suk;Lee, Jeong-Ik;Chu, Hye-Yong
    • Journal of Information Display
    • /
    • v.5 no.3
    • /
    • pp.30-34
    • /
    • 2004
  • Fabrications of barrier layer on a polyethersulfon (PES) film and OLED based on a plastic substrate by atomic layer deposition (ALD) have been carried out. Simultaneous deposition of 30 nm of $AlO_x$ film on both sides of PES film gave film MOCON value of 0.0615 g/$m^2$/day (@38$^{\circ}C$, 100 % R.H.). Moreover, the double layer of 200 urn $SiN_x$ film deposited by PECVD and 20 nm of $AlO_x$ film by ALD resulted in the MOCON value lower than the detection limit of MOCON. The OLED encapsulation performance of the double layer have been investigated using the OLED structure of ITO/MTDATA(20 nm)/NPD(40 nm)/AlQ(60 nm)/LiF(1 nm)/Al(75 nm) based on the plastic substrate. Preliminary life time to 91 % of initial luminance (1300 cd/$m^2$) was 260 hours for the OLED encapsulated with 100 nm of PECVD deposited $SiN_x$/30 nm of ALD deposited $AlO_x$.

Analysis of Electronic Materials Using Transmission Electron Microscopy (TEM) (전자현미경을 이용한 전자재료분석)

  • Kim, Ki-Bum
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.132-144
    • /
    • 1994
  • The application of TEM in investigating the evolution of microstructure during solid phase crystallization of the amorphous Si, $Si_{1-x}Ge_x,\;and\;Si_{1-x}Ge_x/Si$ films deposited on $SiO_2$ substrate, in identifying the failure mechanism of the TiN barrier layer in the Cu-metallization scheme, and in comparing the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films are discussed. First, it is identified that the evolution of microstructure in Si and $Si_{1-x}Ge_x$ alloy films strongly depends on the concentration of Ge in the film. Second, the failure mechanism of the TiN diffusion barrier in the Cu-metallization is the migration of the Cu into the Si substrate, which results in the formation of a dislocation along the Si {111} plane and precipitates (presumably $Cu_{3}Si$) around the dislocation. Finally, the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films is also quite different in these two cases. From these several cases, we demonstrate that the information which we obtained using TEM is critical in understanding the behavior of materials.

  • PDF