Browse > Article
http://dx.doi.org/10.12989/anr.2017.5.3.261

Light-emitting mechanism varying in Si-rich-SiNx controlled by film's composition  

Torchynska, Tetyana V. (Instituto Politecnico Nacional, ESFM)
Vega-Macotela, Leonardo G. (Instituto Politecnico Nacional, ESIME)
Khomenkova, Larysa (V. Lashkaryov Institute of Semiconductor Physics at NASU)
Slaoui, Abdelilah (ICube)
Publication Information
Advances in nano research / v.5, no.3, 2017 , pp. 261-279 More about this Journal
Abstract
Spectroscopic investigation of Si quantum dots (Si-QDs) embedded in silicon nitride was performed over a broad stoichiometry range to optimize light emission. Plasma-enhanced chemical vapor deposition was used to grow the $SiN_x$ films on Si (001) substrates. The film composition was controlled via the flow ratio of silane ($SiH_4$) and ammonia ($NH_3$) in the range of R = 0.45-1.0 allowed to vary the Si excess in the range of 21-62 at.%. The films were submitted to annealing at $1100^{\circ}C$ for 30 min in nitrogen to form the Si-QDs. The properties of as-deposited and annealed films were investigated using spectroscopic ellipsometry, Fourier transform infrared spectroscopy, Raman scattering and photoluminescence (PL) methods. Si-QDs were detected in $SiN_x$ films demonstrating the increase of sizes with Si excess. The residual amorphous Si clusters were found to be present in the films grown with Si excess higher than 50 at.%. Multi-component PL spectra at 300 K in the range of 1.5-3.5 eV were detected and nonmonotonous varying total PL peak versus Si excess was revealed. To identify the different PL components, the temperature dependence of PL spectra was investigated in the range of 20-300 K. The analysis allowed concluding that the "blue-orange" emission is due to the radiative defects in a $SiN_x$ matrix, whereas the "red" and "infrared" PL bands are caused by the exciton recombination in crystalline Si-QDs and amorphous Si clusters. The nature of radiative and no radiative defects in $SiN_x$ films is discussed. The ways to control the dominant PL emission mechanisms are proposed.
Keywords
silicon nanocrystals; silicon nitride; photoluminescence; spectroscopic ellipsometry; FTIR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdulraheem, Y., Gordon, I., Bearda, T., Meddeb, H. and Poortmans, J. (2014), "Optical bandgap of ultrathin amorphous silicon films deposited on crystalline silicon by PECVD", AIP Advances, 4(5), 057122.   DOI
2 Alex, V., Finkbeiner, S. and Weber, J., (1996), "Temperature dependence of the indirect energy gap in crystalline silicon", J. Appl. Phys., 79(9), 6943-6946.   DOI
3 Anutgan, M., Anutgan, T., Atilgan, I. and Katircioglu, B. (2011), "Photoluminescence analyses of hydrogenated amorphous silicon nitride thin films", J. Lumin., 131(7), 1305-1311.   DOI
4 Austin, I.G., Jackson, W.A., Searle, T.M., Bhat, P.K. and Gibson, R.A. (1985), "Photoluminescence properties of a-$SiN_x$ : H alloys", Philos. Mag. B, 52(3), 271-288.   DOI
5 Bandet, J., Despax, B. and Caumont, M. (1999), "Nitrogen bonding environments and local order in hydrogenated amorphous silicon nitride films studied by Raman spectroscopy", J. Appl. Phys., 85(11), 7899-7904.   DOI
6 Rodriguez-Gomez, A., Garcia-Valenzuela, A., Haro-Poniatowski, E. and Alonso-Huitron, J.C. (2013), "Effect of thickness on the photoluminescence of silicon quantum dots embedded in silicon nitride films", J. Appl. Phys., 113(23), 233102.   DOI
7 Rui, Y., Chen, D., Xu, J., Zhang, Y., Yang, L., Mei, J., Ma, Z., Cen, Z, Li, W., Xu, L., Huang, X. abd Chen, K. (2005), "Hydrogen-induced recovery of photoluminescence from annealed a-Si: H/a-$SiO_2$ multilayers", J. Appl. Phys., 98(3), 033532.   DOI
8 Sahu, B.S., Delachat, F., Slaoui, A., Carrada, M., Ferblantier, G. and Muller, D. (2011) "Effect of annealing treatments on photoluminescence and charge storage mechanism in silicon-rich $SiN_x$: H films", Nanoscale Res. Lett., 6(1), 178.   DOI
9 Sain, B. and Das, D. (2013), "Tunable photoluminescence from nc-Si/a-SiNx: H quantum dot thin films prepared by ICP-CVD", Phys. Chem. Chem. Phys., 15(11), 3881-3888.   DOI
10 Scardera, G., Puzzer, T., Perez-Wurfl, I. and Conibeer, G. (2008), "The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures", J. Cryst. Growth, 310(15), 3680-3684.   DOI
11 Sergo, V., Pezzotti, G., Katagiri, G., Muraki, N. and Nishida, T. (1996), "Stress dependence of the raman spectrum of ${\beta}$-silicon nitride", J. Am. Ceram. Soc., 79(3), 781-784.   DOI
12 Sung, G.Y., Park, N.M., Shin, J.H., Kim, K.H., Kim, T.Y., Cho, K.S. and Huh, C. (2006), "Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes", IEEE J. Sel. Top. Quant. Elect., 12(6), 1545-1555.   DOI
13 Temple, P.A. and Hathaway, C.E. (1973), "Multiphonon raman spectrum of silicon", Phys. Rev. B, 7(8), 3685-3696.   DOI
14 Torchynska, T.V., Palacios Gomez, J., Polupan, G.P., Garcia Borquez, A., Korsunskaya, N.E. and Khomenkova, L.Yu. (2000b), "Complex nature of the red photoluminescence band and peculiarities of its excitation in porous silicon", Appl. Surf. Sci., 167(3), 197-204.   DOI
15 Tomar, V.K., Patil, L.S. and Guatam, D.K. (2008), "Deposition and characterization of silicon nitride films using HMDS for photonics applications", J. Optoelectron. Adv. Mater., 10(10), 2657-2662.
16 Torchynska, T.V. (2010), "Nanocrystals and quantum dots. Some physical aspects", In: Nanocrystals and Quantum Dots of Group IV Semiconductors, (T.V. Torchynska, Yu Vorobiev Eds.), American Scientific Publisher, Stevenson Ranch, CA, USA.
17 Torchynska, T.V., Korsunska, N.E., Dzhumaev, B.R. and Khomenkova, L.Yu. (2000a), "Three approaches to surface substance role investigation in porous silicon photoluminescence and its excitation", J. Phys. Chem. Solid, 61(6), 937-941.   DOI
18 Torchynska, T.V., Cas,s Espinola, J.L., Vergara Hernandez, E., Khomenkova, L., Delachat, F. and Slaoui, A. (2015a), "Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties", Thin Solid Films, 581, 65-69.   DOI
19 Torchynska, T.V., Casas Espinola, J.L., Khomenkova, L., Vergara Hernandez, E., Andraca Adame, J.A. and Slaoui, A. (2015b), "Structural and light emitting properties of silicon-rich silicon nitride films grown by plasma enhanced-chemical vapor deposition", Mater. Sci. Semicond. Proces., 37, 46-50.   DOI
20 Tsu, D.V., Lucovsky, G. and Mantini, M.J. (1986), "Local atomic structure in thin films of silicon nitride and silicon diimide produced by remote plasma-enhanced chemical-vapor deposition", Phys. Rev. B, 33(10), 7069-7074.   DOI
21 Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G. and Delerue, C. (1999), "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen", Phys. Rev. Lett., 82(1), 197-200.   DOI
22 Walters, R.J., Bourianoff, G.I. and Atwater, H.A. (2005), "Field-effect electroluminescence in silicon nanocrystals", Nat. Mater., 4(2), 143-146.   DOI
23 Wang, Y.Q., Wang, Y.G., Cao, L. and Cao, Z.X. (2003), "High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride", Appl. Phys. Lett., 83(17), 3474-3476.   DOI
24 Wang, M., Li, D., Yuan, Zh., Yang, D. and Que, D. (2007), "Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters", Appl. Phys. Lett., 90(13), 131903.   DOI
25 Warren, W.I., Lenahan, P.M. and Curry, S.E. (1990), "First observation of paramagnetic nitrogen danglingbond centers in silicon nitride", Phys. Rev. Lett., 65(2), 207-210.   DOI
26 Wenge, D., Wenhao, Q.I., Wanbing, L.U., Zicai, Zh., Wei, Y.U. and Guangsheng, F.U. (2008), "Influence of annealing environment on the Hydrogen related bonding structure in silicon nitride thin films containing silicon nanoparticles", Proceedings of SPIE, Volume 7135, 71353X-1.
27 Zeng, X., Liao, W., Wen, G., Wen, X. and Zheng, W. (2014), "Structural evolution and photoluminescence of annealed Si-rich nitride with Si quantum dots prepared by plasma enhanced chemical vapor deposition", J. Appl. Phys., 115(15), 154314.   DOI
28 Hao, H.L. and Shen, W.Z. (2008), "Identification and control of the origin of photoluminescence from silicon quantum dots", Nanotechnology, 19(45), 455704.   DOI
29 Goncharova, L.V., Nguyen, P.H., Karner, V.L., D'Ortenzio, R., Chaudhary, S., Mokry, C.R. and Simpson, P.J. (2015), "Si quantum dots in silicon nitride: Quantum confinement and defects", J. Appl. Phys., 118(22), 224302.   DOI
30 Fukutani, K., Kanbe, M., Futako, W., Kaplan, B., Kamiya, T., Fortmann, C.M. and Shimizu, I. (1998), "Band gap tuning of a-Si: H from 1.55 eV to 2.10 eV by intentionally promoting structural relaxation", J. Non-Crystal. Solid., 227-230, 63-67.   DOI
31 Hao, H.L., Wu, L.K. and Shen, W.Z. (2008), "Controlling the red luminescence from silicon quantum dots in hydrogenated amorphous silicon nitride films", Appl. Phys. Lett., 92(12), 121922.   DOI
32 He, J., Wang, Ch., Li, W., Qi, K.-Ch. and Jiang, Y.-D. (2013), "Effect of gas temperature on the structural and optoelectronic properties of a-Si:H thin films deposited by PECVD", Surf. Coat. Technol., 214, 131-137.   DOI
33 Hsiao, H.L., Yang, A.B. and Hwang, H.L. (2008), "Luminescence and structural properties of silicon-rich nitride by X-ray absorption spectroscopy", J. Phys. Chem. Sol., 69(2), 278-283.   DOI
34 HORIBA Software (2012), http://www.horiba.com/scientific/products/ellipsometers/
35 Jelisson Jr., G.E. and Modine, F.A. (1996), "Parameterization of the optical functions of amorphous materials in the interband region", Appl. Phys. Lett., 69(3), 371-374.   DOI
36 Jiang, C.W. and Green, M.A. (2006), "Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications", J. Appl. Phys., 99(11), 114902.   DOI
37 Khomenkova, L., Korsunska, N., Sheinkman, M., Stara, T., Torchynska, T.V. and Vivas Hernandez, A. (2005), "Radiative channel competition in silicon nanocrystallites", J. Lumin., 115(3), 117-121.   DOI
38 Johnson, F.A. and Loudon, R., (1964), "Critical-point analysis of the phonon spectra of diamond, silicon and germanium", Proc. R. Soc. Lond. A, 281(1385), 274-290.   DOI
39 Kato, H., Kashio, N., Ohki, Y., Seol, K.S. and Noma, T. (2003), "Band-tail photoluminescence in hydrogenated amorphous silicon oxynitride and silicon nitride films", J. Appl. Phys., 93(1), 239-244.   DOI
40 Keita, A-S., Naciri, A.E., Delachat, F., Carrada, M., Ferblantier, G. and Slaoui, A. (2010), "Spectroscopic ellipsometry investigation of the optical properties of nanostructured Si/SiNx films", J. Appl. Phys., 107(9), 093516.   DOI
41 Khomenkova, L. Gourbilleau, F., Cardin, J., Jambois, O., Garrido, B. and Rizk, R. (2009), "Long lifetime and efficient emission from $Er^{3+}$ ions coupled to Si nanoclusters in Si-rich $SiO_2$ layers", J. Lumin., 129(12), 1519-1523.   DOI
42 Khomenkova, L., Cardin, J., Portier, X. and Gourbilleau, F. (2010), "Thermal stability of high-k Si-rich $HfO_2$ layers grown by RF magnetron sputtering", Nanotechnology, 21(28), 285707.   DOI
43 Kim, T.Y., Park, N.M., Kim, K.H., Sunga, G.Y., Ok, Y.W., Seong, T.Y. and Choi, C.J. (2004), "Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films", Appl. Phys. Lett., 85(22), 5355-5357.   DOI
44 Kim, B.H., Cho, C.H., Kim, T.W., Park, N.M., Sung, G.Y. and Park, S.J. (2005), "Photoluminescence of silicon quantum dots in silicon nitride grown by $NH_3$ and $SiH_4$", Appl. Phys. Lett., 86(9), 091908.   DOI
45 Bugaev, K.O., Zelenina, A.A. and Volodin, V.A. (2012), "Vibrational spectroscopy of chemical species in silicon and silicon-rich nitride thin films", Int. J. Spectroscopy, 2012, 281851.
46 Belyi, V.I., Vasilyeva, L.L., Gennann, R., Ginovker, A.S., Gritsenko, V.A., Repinsky, S.M., Sinitsa, S.P., Smirnova, T.P. and Edelman, F.L. (1988), Silicon Nitride in Electronics, Materials Science, Monographs, Volume 34 , Elsevier Science Ltd., Amsterdam, Netherlands.
47 Bommali, R.K., Singh, S.P., Rai, S., Mishra, P., Sekhar, B.R., Prakash, G.V. and Srivastava, P. (2012), "Excitation dependent photoluminescence study of Si-rich a-$SiN_x$: H thin films", J. Appl. Phys., 112(12), 123518.   DOI
48 Bruggeman, D.A.G. (1935), "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen", Ann. Phys., 416, 636-664.   DOI
49 Campbell, I.H. and Fauchet, P.M. (1986), "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors", Sol. St. Commun., 58(10), 739-741.   DOI
50 Kim, T.W., Cho, C.H., Kim, B.H. and Park, S.J. (2006), "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using $SiH_4$ and $NH_3$", Appl. Phys.Lett., 88(12), 123102.   DOI
51 Chen, M.J., Yen, J.L., Li, J.Y., Chang, J.F., Tsai, S.C. and Tsai, C.S. (2004), "Stimulated emission in a nanostructured silicon pn junction diode using current injection", Appl. Phys. Lett., 84(12), 2163-2165.   DOI
52 Cho, C.H., Kim, B.H., Kim, T.W., Park, S.J., Park, N.M. and Sung, G.Y. (2005), "Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film", Appl. Phys. Lett., 86(14), 143107.   DOI
53 Comedi, D., Zalloum, O.H.Y, Wojcik, J. and Mascher, P. (2006), "Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-rich Si oxide films", IEEE J. Sel. Top. Quant. Elect., 12(6), 1561-1569.   DOI
54 Conibeer, G., Green, M., Corkish, R., Cho, Y., Cho, E.C., Cho, C.W., Jiang, C.W., Fangsuwannarak, T., Pink, W., Huang, Y., Puzzer, T., Trupke, T., Richards, B., Shalav, A. and Lin, K.L. (2006), "Silicon nanostructures for third generation photovoltaic solar cells", Thin Solid Films, 511-512, 654-662.   DOI
55 Dal Negro, L., Yi, J.H., Nguyen, V., Yi, Y., Michel, J. and Kimerling, L.C. (2005), "Spectrally enhanced light emission from aperiodic photonic structures", Appl. Phys. Lett., 86(26), 261905.   DOI
56 Dal Negro, L., Yi, J.H., Kimerling, L.C., Hamel, S., Williamson, A. and Galli, G. (2006), "Light emission from silicon-rich nitride nanostructures", Appl. Phys. Lett., 88(18), 183103.   DOI
57 Delachat, F. (2010), "Elaboration and characterization of si-licon nanoparticles in silicon nitride for photovoltaic application", Ph.D. Thesis; InESS-University of Strasbourg, Strasbourg, France.
58 Korsunskaya, N.E., Torchinskaya, T.V., Khomenkova, L.Yu., Dzhumaev, B.R. and Prokes, S.M., (2000), "Suboxide-related centre as the source of the intense red luminescence of porous Si", Microelec. Eng., 51-52, 485-493.   DOI
59 Kistner, J., Chen, X., Weng, Y., Strunk, H.P., Schubert, M.B. and Werner, J.H. (2011), "Photoluminescence from silicon nitride - no quantum effect", J. Appl. Phys., 110(2), 023520.   DOI
60 Korsunska, N., Bulakh, B., Jumayev, B., Khomenkova, L., Yukhymchuk, V. and Torchynska, T. (2005), "Raman scattering characterization of macro- and nanoporous silicon", Appl. Surf. Sci., 243(1), 30-35.   DOI
61 Lan, Sh.M., Huang, Y.Ch., Liao, S.M., Li, Zh.Y., Yang, T.N., Ku, Ch.T., Chen, M.Ch. and Huang, Y.H. (2009), "Luminescence mechanisms of silicon-rich nitride films fabricated by atmospheric pressure chemical vapor deposition in $N_2$ and $H_2$ atmospheres", J. Appl. Phys., 105(5), 053107.   DOI
62 Mackel, H. and Ludemann, R. (2001), "Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation", J. Appl. Phys., 92(5), 2602-2609.   DOI
63 Mercaldo, L.V., Esposito, E.M., Veneri, P.D., Fameli, G., Mirabella, S. and Nicotra, G. (2010), "First and second-order Raman scattering in Si nanostructures within silicon nitride", Appl. Phys. Lett., 97(15), 153112.   DOI
64 Mo, C.M., Zhang, L.D., Xie, C.Y. and Wang, T. (1993), "Luminescence of nanometer-sized amorphous silicon nitride solids", J. Appl. Phys., 73(10), 5185-5189.   DOI
65 Forouhi, A.R. and Bloomer, I. (1986), "Optical dispersion relations for amorphous semiconductors and amorphous dielectrics", Phys. Rev. B, 34(10), 7018-7026.   DOI
66 Delachat, F., Carrada, M., Ferblantier, G., Grob, J-J. and Slaoui, A. (2009), "Properties of silicon nanoparticles embedded in $SiN_x$ deposited by microwave-PECVD", Nanotechnology, 20(41), 415608.   DOI
67 Deshpande, S.V. and Gulari, E., Brown, S.W. and Rand, S.C. (1995), "Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition", J. Appl. Phys., 77, 6534-6541.   DOI
68 Fauchet, P.M., Ruan, J., Chen, H., Pavesi, L., Dal Negro, L., Cazzaneli, M., Elliman, R.G., Smith, N., Samoc, M. and Luther-Davies, B. (2005), "Optical gain in different silicon nanocrystal systems", Opt. Mater., 27(5), 745-749.   DOI
69 Giorgis, F., Vinegoni, C. and Pavesi, L. (2000), "Optical absorption and photoluminescence properties of a-Si1-xNx: H films deposited by plasma-enhanced CVD", Phys. Rev. B, 61(7), 4693-4698.   DOI
70 Molinari, M., Rinnert, H. and Vergnat, M. (2007), "Evolution with the annealing treatments of the photoluminescence mechanisms in a-$SiN_x$: H alloys prepared by reactive evaporation", J. Appl. Phys., 101(12), 123532.   DOI
71 Park, N.M., Kim, T.S. and Park, S.J. (2001b), "Band gap engineering of amorphous silicon quantum dots for light-emitting diodes", Appl. Phys. Lett., 78(17), 2575-2577.   DOI
72 Muraki, N., Katagiri G., Sergo, V., Pezzotti, G. and Nishida, T. (1997), "Mapping of residual stresses around an indentation in ${\beta}$-Si3N4 using Raman spectroscopy", J. Mater. Sci., 32(20), 5419-5423.   DOI
73 Nalini, R.P., Khomenkova, L., Debieu, O., Cardin, J., Dufour, C., Carrada, M. and Gourbilleau, F. (2012), "SiOx/SiNy multilayers for photovoltaic and photonic applications", Nanoscale Res. Lett., 7(1), 124.   DOI
74 Park, N.M., Choi, C.J., Seong, T.Y. and Park, S.J. (2001a), "Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride", Phys. Rev. Lett., 86(7), 1355-1357.   DOI
75 Pavesi, L. and Lockwood, D.J. (2004), Silicon Photonics, Springer-Verlag Berlin, Heidelberg, Germany.
76 Philipp, H.R. (1973), "Optical properties of silicon nitride", J. Electrochem. Soc., 120(2), 295-300.   DOI
77 Priolo, F., Franzo, G., Pacifici, D., Vinciguerra, V., Iacona, F. and Irrera, A. (2001), "Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals", J. Appl. Phys., 89(1), 264-272.   DOI
78 Richter, H., Wang, Z.P. and Ley, L. (1981), "The one phonon Raman spectrum in microcrystalline silicon", Sol. St. Commun., 39(5), 625-629.   DOI
79 Rodriguez, A., Arenas, J. and Alonso, J.C. (2012), "Photoluminescence mechanisms in silicon quantum dots embedded in nanometric chlorinated-silicon nitride, films", J. Lumin., 132(9), 2385-2389.   DOI