• 제목/요약/키워드: $O_2$ sensor

검색결과 1,271건 처리시간 0.019초

Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성 (Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties)

  • 김보영;이철순;박준식;이종흔
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.211-215
    • /
    • 2014
  • The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.

An electrochemical hydrogen peroxide sensor for applications in nuclear industry

  • Park, Junghwan;Kim, Jong Woo;Kim, Hyunjin;Yoon, Wonhyuck
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.142-147
    • /
    • 2021
  • Hydrogen peroxide is a radiolysis product of water formed under gamma-irradiation; therefore, its reliable detection is crucial in the nuclear industry for spent fuel management and coolant chemistry. This study proposes an electrochemical sensor for hydrogen peroxide detection. Cysteamine (CYST), gold nanoparticles (GNPs), and horseradish peroxidase (HRP) were used in the modification of a gold electrode for fabricating Au/CYST/GNP/HRP sensor. Each modification step of the electrode was investigated through electrochemical and physical methods. The sensor exhibited strong sensitivity and stability for the detection and measurement of hydrogen peroxide with a linear range of 1-9 mM. In addition, the Michaelis-Menten kinetic equation was applied to predict the reaction curve, and a quantitative method to define the dynamic range is suggested. The sensor is highly sensitive to H2O2 and can be applied as an electrochemical H2O2-sensor in the nuclear industry.

High-k 감지막 평가를 통한 고성능 고감도의 Electrolyte-Insulator-Semiconductor pH센서 제작 (Study of High-k Sensing Membranes for the High Quality Electrolyte Insulator Semiconductor pH Sensor)

  • 배태언;장현준;조원주
    • 한국전기전자재료학회논문지
    • /
    • 제25권2호
    • /
    • pp.125-128
    • /
    • 2012
  • We fabricated the electrolyte-insulator-semiconductor (EIS) devices with various high-k sensing membranes to realize a high quality pH sensor. The sensing properties of each high-k dielectric material were compared with those of conventional $SiO_2$ (O) and $SiO_2/Si_3N_4$ (ON) membranes. As a result, the high-k sensing membranes demonstrated better sensitivity and stability than the O and ON membranes. Especially, the $SiO_2/HfO_2$ (OH) stacked layer showed a high sensitivity and the $SiO_2/Al_2O_3$ (OA) stacked layer exhibited an excellent chemical stability. In conclusion, the high-k sensing membranes are expected to have excellent operating characteristics in terms of sensitivity and chemical stability for the biosensor application.

IoT 서비스 구현을 위한 에너지 하베스팅 Smart Sensor 설계 방안 연구 (Study on the Design Method of the Energy Harvesting Smart Sensor for Implementing IoT Service)

  • 장호덕
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권1호
    • /
    • pp.89-94
    • /
    • 2018
  • 본 논문에서는 IoT (Internet of Things) 서비스 구현을 위한 스마트센서의 설계 방안을 연구하였다. 지속적인 데이터 수집을 위한 센서의 전원 공급부는 에너지 하베스팅 (Energy Harvesting) 기술을 적용하였으며, 주변 환경으로부터 영향을 줄일 수 있는 압전소자 (piezoelectric transducer)를 선택하여 전원 공급부를 설계하였다. 데이터 전송을 위한 무선통신 인터페이스는 BLE (Bluetooth Low Energy) 기술을 적용하여 설계하였다. BLE는 저전력 단거리 무선 통신에 적합하며, 주요 응용분야인 BLE 비콘 (beacon)은 O2O (Online to Offline) 서비스, 실내 측위 기반의 내비게이터, 도난/미아 방지 서비스에서 모바일 게임 등으로 활용 범위가 확대되고 있다. BLE 무선통신의 짧은 전송 거리를 보완하기 위해 무선 커버리지를 확대할 수 있는 방안을 연구하였으며, 네트워크 구축이 용이하고 무선 커버리지 확대할 수 있는 CATV 망을 활용한 BLE 센서 네트워크 구축 방안을 제안하였다.

디젤 엔진 Urea-SCR DeNOx 시스템용 혼합전위 방식 암모니아 가스 센서의 감지물질 특성 비교 (Characteristic comparison of sensing materials in mixed potential type NH3 gas sensors for urea-SCR DeNOx system in diesel engine)

  • 최안기;양영창;구본철;박종욱
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.176-183
    • /
    • 2010
  • It is considered that the urea injection DeNOx SCR(selective catalytic reduction) system is the only promising method to satisfy the worldwide NOx emission standards. As for the theoretical aspect, reactants of NO and $NO_2$ with $NH_3$ produce $H_2O$, $N_2$ and $O_2$ which do not harm human beings and environmental as well. The realization of maximum NOx conversion (without using a post oxidation catalyst) is only possible with closed loop controlled urea dosing. It means built-in $NH_3$ gas sensor have to be developed for detecting accurate $NH_3$ concentration for the feedback system. Using YSZ(yttria-stabilized zirconia) as a solid state electrolyte and $In_2O_3$ as a sensing material, this paper aims to study dependable $NH_3$ gas sensor for the promising solution of DeNOx technology, which have a reproducible electric output signal, a high sensitivity and fast response.

2단계 수열합성을 이용한 ZnO 계층 나노구조 기반 UV 센서 제작 (Fabrication of UV Sensor Based on ZnO Hierarchical Nanostructure Using Two-step Hydrothermal Growth)

  • 우현수;김건휘;김수현;안태창;임근배
    • 센서학회지
    • /
    • 제29권3호
    • /
    • pp.187-193
    • /
    • 2020
  • Ultraviolet (UV) sensors are widely applied in industrial and military fields such as environmental monitoring, medicine and astronomy. Zinc oxide (ZnO) is considered as one of the promising materials for UV sensors because of its ease of fabrication, wide bandgap (3.37 eV) and high chemical stability. In this study, we used the hydrothermal growth of ZnO to form two types of ZnO nanostructures (Nanoflower and nanorod) and applied them to a UV sensor. To improve the performance of the UV sensor, the hydrothermal growth was used in a two-step process for fabricating ZnO hierarchical nanostructures. The fabricated ZnO hierarchical nanostructure improved the performance of the UV sensor by increasing the ratio of volume to surface area and the number of nanojunctions compared to one-step hydrothermal grown ZnO nanostructure. The UV sensor based on the ZnO hierarchical nanostructure had a maximum photocurrent of 44 ㎂, which is approximately 3 times higher than that of a single nanostructure. The UV sensor fabrication method presented in this study is simple and based on the hydrothermal solution process, which is advantageous for large-area production and mass production; this provides scope for extensive research in the field of UV sensors.

Selective NO2 Sensors Using MoS2-MoO2 Composite Yolk-shell Spheres

  • Jeong, Seong Yong;Choi, Seung Ho;Yoon, Ji-Wook;Won, Jong Min;Kang, Yun Chan;Park, Joon-Shik;Lee, Jong-Heun
    • 센서학회지
    • /
    • 제24권3호
    • /
    • pp.151-154
    • /
    • 2015
  • The gas sensing characteristic of $MoS_2-MoO_2$ composite yolk-shell spheres were investigated. $MoO_3$-carbon composite spheres were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Mo-source and sucrose in nitrogen, which were converted into $MoO_3$ yolk-shell spheres by heat treatment at $400^{\circ}C$ in air. Subsequently, $MoS_2-MoO_2$ composite yolk-shell spheres were prepared by the partial sulfidation of $MoO_3$. The $MoS_2-MoO_2$ composite yolk-shell spheres showed relatively low and irreversible gas sensing characteristics at < $200^{\circ}C$. In contrast, the sensor showed high and reversible response (S=resistance ratio) to 5 ppm $NO_2$ (S=14.8) at $250^{\circ}C$ with low cross-responses (S=1.17-2.13) to other interference gases such as ethanol, CO, xylene, toluene, trimethylamine, $NH_3$, $H_2$, and HCHO. The $MoS_2-MoO_2$ composite yolk-shell spheres can be used as reliable sensors to detect $NO_2$ in a selective manner.

Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene

  • Nikpanje, Elham;Bahmaei, Manochehr;Sharif, Amirabdolah Mehrdad
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.173-187
    • /
    • 2021
  • In the present research, a simple electrochemical sensor based on a carbon paste electrode (CPE) modified with ZnO-Zn2SnO4-SnO2 and graphene (ZnO-Zn2SnO4-SnO2/Gr/CPE) was developed for the direct, simultaneous and individual electrochemical measurement of Acetaminophen (AC), Caffeine (Caf) and Ascorbic acid (AA). The synthesized nano-materials were investigated using scanning electron microscopy, X-ray Diffraction, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy techniques. Cyclic voltammetry and differential pulse voltammetry were applied for electrochemical investigation ZnO-Zn2SnO4-SnO2/Gr/CPE, and the impact of scan rate and the concentration of H+ on the electrode's responses were investigated. The voltammograms showed a linear relationship between the response of the electrode for individual oxidation of AA, AC and, Caf in the range of 0.021-120, 0.018-85.3, and 0.02-97.51 μM with the detection limit of 8.94, 6.66 and 7.09 nM (S/N = 3), respectively. Also, the amperometric technique was applied for the measuring of the target molecules in the range of 0.013-16, 0.008-12 and, 0.01-14 μM for AA, AC and, Caf with the detection limit of 6.28, 3.64 and 3.85 nM, respectively. Besides, the ZnO-Zn2SnO4-SnO2/Gr/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for the determination of AA, AC and, Caf. Finally, the proposed sensor was successfully used to show the amount of AA, AC and, Caf in urine, blood serum samples with recoveries ranging between 95.8% and 104.06%.

Thick Films of LaNiO3 Perovskite Structure Impregnated with In and Bi Oxides as Acetonitrile Sensor

  • Salker, A.V.;Choi, Nak-Jin;Kwak, Jun-Hyuk;Lee, Duk-Dong
    • 센서학회지
    • /
    • 제13권4호
    • /
    • pp.298-302
    • /
    • 2004
  • Thick films of $LaNiO_{3}$ having perovskite structure impregnated with indium and bismuth oxides have been used as sensing material for acetonitrile ($CH_{3}CN$) gas. The sensor response for $CH_{3}CN$ is quite good with an excellent recovery for partial pressure from 3 ppm to 20 ppm between 200 and $250^{\circ}C$. $LaNiO_{3}$ alone has exhibited low response, but after impregnation of $In_{2}O_{3}$ and $Bi_{2}O_{3}$ have given increased sensitivity even with 3 ppm partial pressure of $CH_{3}CN$ at $200^{\circ}C$. It is assumed that $CH_{3}CN$ is undergoing oxidation reaction on surface of the film.

자외선 조사를 이용한 SnO2 나노입자/Pd 촉매층을 갖는 GaN 기반 수소 센서의 안정성 개선 연구 (Improved Stability of GaN-based Hydrogen Sensor with SnO2 Nanoparticles/Pd Catalyst Layer Using UV Illumination)

  • 최원태;오희재;김정진;차호영
    • 반도체공학회 논문지
    • /
    • 제1권1호
    • /
    • pp.9-13
    • /
    • 2023
  • 본 연구에서는 SnO2 나노입자와 Pd 금속의 이중층으로 구성된 촉매층을 갖는 AlGaN/GaN 이종접합 기반의 상온동작 수소센서를 제작하여 해당 센서의 안정성 개선 연구를 수행하였다. 제작된 센서를 고온 환경이 아닌 상온에서 수소에 노출 및 차단을 반복하며 동작 시켰을 때 시간에 따라 대기전류가 감소하는 불안정한 전류 드리프트 (current drift) 현상이 발생하였지만, 자외선 (UV) 조사를 함께 진행하면서 반복 측정을 하였을 때 해당 불안정성의 가시적인 개선 효과를 이루었다.