Browse > Article
http://dx.doi.org/10.5369/JSST.2020.29.3.187

Fabrication of UV Sensor Based on ZnO Hierarchical Nanostructure Using Two-step Hydrothermal Growth  

Woo, Hyeonsu (Department of Mechanical Engineering, POSTECH)
Kim, Geon Hwee (Department of Mechanical Engineering, POSTECH)
Kim, Suhyeon (Department of Mechanical Engineering, POSTECH)
An, Taechang (Department of Mechanical Robotics Engineering, Andong National University)
Lim, Geunbae (Department of Mechanical Engineering, POSTECH)
Publication Information
Journal of Sensor Science and Technology / v.29, no.3, 2020 , pp. 187-193 More about this Journal
Abstract
Ultraviolet (UV) sensors are widely applied in industrial and military fields such as environmental monitoring, medicine and astronomy. Zinc oxide (ZnO) is considered as one of the promising materials for UV sensors because of its ease of fabrication, wide bandgap (3.37 eV) and high chemical stability. In this study, we used the hydrothermal growth of ZnO to form two types of ZnO nanostructures (Nanoflower and nanorod) and applied them to a UV sensor. To improve the performance of the UV sensor, the hydrothermal growth was used in a two-step process for fabricating ZnO hierarchical nanostructures. The fabricated ZnO hierarchical nanostructure improved the performance of the UV sensor by increasing the ratio of volume to surface area and the number of nanojunctions compared to one-step hydrothermal grown ZnO nanostructure. The UV sensor based on the ZnO hierarchical nanostructure had a maximum photocurrent of 44 ㎂, which is approximately 3 times higher than that of a single nanostructure. The UV sensor fabrication method presented in this study is simple and based on the hydrothermal solution process, which is advantageous for large-area production and mass production; this provides scope for extensive research in the field of UV sensors.
Keywords
Zinc oxide; Hierarchical nanostructure; UV sensor; Photocurrent; Hydrothermal growth;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. Pacholski, A. Kornowski, and H. Weller, "Self-Assembly of ZnO: From Nanodots to Nanorods", Angew. Chem.-Int. Edit., Vol. 41, No. 7, pp. 1188-1191, 2002.   DOI
2 H. Ohta, and H. Hosono, "Transparent oxide optoelectronics", Mater. Today, Vol. 7, No. 6, pp. 42-51, 2004.   DOI
3 M. Razeghi, and A. Rogalski, "Semiconductor ultraviolet detectors", J. Appl. Phys., Vol. 79, No. 10, pp. 7433-7473, 1996.   DOI
4 T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, "A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors", Sensors, Vol. 9, No. 8, pp. 6504-6529, 2009.   DOI
5 S. C. Moon, J. S. Lee, K. J. No, S. J. Yang, and S. E. Lee, "A Study on the Material Characteristics of the NiO/ZnO Ultraviolet Sensor Based on Solution Precess", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 30, No. 8, pp. 508- 513, 2017.   DOI
6 Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications", J. Phys. Condens. Matter., Vol. 16, pp. R829-R858, 2004.   DOI
7 T. H. Moon, M. C. Jeong, W. Lee, and J. M. Myoung, "The fabrication and characterization of ZnO UV detector", Appl. Surf. Sci., Vol. 240, No. 1-4, pp. 280-285, 2005.   DOI
8 S. Kim, G. H. Kim, H. Woo, T. An, and G. Lim, "Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels", ACS Omega, Vol. 5, No. 7, pp. 3144-3150, 2020.   DOI
9 G. H. Kim, T. An, and G. Lim, "Bioinspired Structural Colors Fabricated with ZnO Quasi-Ordered Nanostructures", ACS Appl. Mater. Interfaces, Vol. 9, No. 22, pp. 19057-19062, 2017.   DOI
10 T. Y. Ma, "Effects of Precursor Concentration on the Growth of ZnO Nanorods", Trans. Korean. Inst. Elect. Eng., Vol. 65, No. 11, pp. 1835-1839, 2016.   DOI
11 I. Y. Y. Bu, and C. C. Yang, "High-performance ZnO nanoflake moisture sensor", Superlattices Microstruct., Vol. 51, No. 6, pp. 745-753, 2012.   DOI
12 S. O. Brien, L. H. K. Koh, and G. M. Crean, "ZnO thin films prepared by a single step sol-gel process", Thin Solid Films, Vol. 516, No. 7, pp. 1391-1395, 2008.   DOI
13 Y. Zhang, B. Lin, X. Sun, and Z. Fu, "Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrate by the sol-gel process", Appl. Phys. Lett., Vol. 86, No. 13, pp. 131910(1)-131910(3), 2005.   DOI
14 S. F. Akhtarianfar, A. Khayatian, R. Shakernejad, M A. Kashi, and S. W. Hong, "Improved sensitivity of UV sensors in hierarchically structured arrays of network-loaded ZnO nanorods via optimization techniques". RSC Adv., Vol. 7, No. 51, pp. 32316-32326, 2017.   DOI
15 M. Guo, P. Diao, X. Wang, and S. Cai, "The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films", J. Solid State Chem., Vol. 178, No. 10, pp. 3210-3215, 2005.   DOI
16 F. Yi, Q. Liao, X. Yan, Z. Bai, Z. Wang, X. Chen, Q. Zhang, Y. Huang, and Y. Zhang, "Simple fabrication of a ZnO nanorod array UV detector with a high performance", Physica E, Vol. 61, pp. 180-184, 2014.   DOI
17 M. R. Alenezi, S. J. Henley, and S. R. P. Silva, "On-chip Fabrication of High Performance Nanostructured ZnO UV Detectors", Sci. Rep., Vol. 5, pp. 8516(1)-8516(9), 2014.   DOI
18 S. K. Panda, and C. Jacob, "Preparation of transparent ZnO thin films and their application in UV sensor devices", Solid-State Electron., Vol. 73, pp. 44-50, 2012.   DOI
19 B. Liu, and H. C. Zeng, "Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm", J. Am. Chem. Soc., Vol. 125, No. 15, pp. 4430-4431, 2003.   DOI
20 Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors", J. Appl. Phys., Vol. 84, No. 18, pp. 3654-3656, 2019.