Browse > Article
http://dx.doi.org/10.33961/jecst.2020.00724

Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene  

Nikpanje, Elham (Department of Analytical Chemistry, Faculty of Chemistry, Islamic Azad University)
Bahmaei, Manochehr (Department of Analytical Chemistry, Faculty of Chemistry, Islamic Azad University)
Sharif, Amirabdolah Mehrdad (Department of Analytical Chemistry, Faculty of Chemistry, Islamic Azad University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 173-187 More about this Journal
Abstract
In the present research, a simple electrochemical sensor based on a carbon paste electrode (CPE) modified with ZnO-Zn2SnO4-SnO2 and graphene (ZnO-Zn2SnO4-SnO2/Gr/CPE) was developed for the direct, simultaneous and individual electrochemical measurement of Acetaminophen (AC), Caffeine (Caf) and Ascorbic acid (AA). The synthesized nano-materials were investigated using scanning electron microscopy, X-ray Diffraction, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy techniques. Cyclic voltammetry and differential pulse voltammetry were applied for electrochemical investigation ZnO-Zn2SnO4-SnO2/Gr/CPE, and the impact of scan rate and the concentration of H+ on the electrode's responses were investigated. The voltammograms showed a linear relationship between the response of the electrode for individual oxidation of AA, AC and, Caf in the range of 0.021-120, 0.018-85.3, and 0.02-97.51 μM with the detection limit of 8.94, 6.66 and 7.09 nM (S/N = 3), respectively. Also, the amperometric technique was applied for the measuring of the target molecules in the range of 0.013-16, 0.008-12 and, 0.01-14 μM for AA, AC and, Caf with the detection limit of 6.28, 3.64 and 3.85 nM, respectively. Besides, the ZnO-Zn2SnO4-SnO2/Gr/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for the determination of AA, AC and, Caf. Finally, the proposed sensor was successfully used to show the amount of AA, AC and, Caf in urine, blood serum samples with recoveries ranging between 95.8% and 104.06%.
Keywords
Determination; Caffeine; Blood Serum; Voltammetry; $ZnO-Zn_2SnO_4-SnO_2$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D.M. Fernandes, N. Silva, C. Pereira, C. Moura, J.M.C.S. Magalhaes, B. Bachiller-Baeza, I. RodriguezRamos, A. Guerrero-Ruiz, C. Delerue-Matos, C. Freire, Sens. Actuators, B, 2015, 218, 128-136.   DOI
2 V.K. Gupta, A.K. Jain, S.K. Shoora, Electrochim. Acta, 2013, 93, 248-253.   DOI
3 P.R. Dalmasso, M.L. Pedano, G.A. Rivas, Sens. Actuators, B, 2012, 173, 732-736.   DOI
4 M.M. Rahman, N.S. Lopa, M.J. Ju, J.-J. Lee, J. Electroanal. Chem., 2017, 792, 54-60.   DOI
5 D. Liu, M.M. Rahman, C. Ge, J. Kim, J.-J. Lee, New J. Chem., 2017, 41(24), 15458-15465.   DOI
6 P.T.K. Thu, N.D. Trinh, N.T.V. Hoan, D.X. Du, T.X. Mau, V.H. Trung, N.H. Phong, T.T.T. Toan, D.Q. Khieu, J. Mater. Sci.: Mater. Electron., 2019, 30(18), 17245-17261.   DOI
7 X.-M. Miao, R. Yuan, Y.-Q. Chai, Y.-T. Shi, Y.-Y. Yuan, J. Electroanal. Chem., 2008, 612(2), 157-163.   DOI
8 M.M. Rahman, X.-b. Li, Y.-D. Jeon, H.-J. Lee, S.J. Lee, J.-J. Lee, J. Electrochem. Sci. Technol., 2012, 3(2), 90-94.   DOI
9 E. Murugan, K. Kumar, Anal. Chem., 2019, 91(9), 5667-5676.   DOI
10 T. Alizadeh, M. Akhoundian, Electrochim. acta, 2010, 55(20), 5867-5873.   DOI
11 S. Mayanna, B. Jayaram, Analyst, 1981, 106(1263), 729-732.   DOI
12 A. Salimi, H. Mamkhezri, R. Hallaj, S. Soltanian, Sens. Actuators, B, 2008, 129(1), 246-254.   DOI
13 B. Habibi, M. Jahanbakhshi, M.H. Pournaghi-Azar, Anal. Biochem., 2011, 411, 167-175.   DOI
14 M.M. Rahman, J.-J. Lee, J. Electrochem. Sci. Technol, 2019, 10, 185-195.   DOI
15 J. Qiao, L. Zhang, S. Gao, N. Li, Appl. Biochem. Biotechnol., 2020, 190(2), 529-539.   DOI
16 G. Burgot, F. Auffret, J.-L. Burgot, Anal. Chim. Acta, 1997, 343(1-2), 125-128.   DOI
17 R. Sandulescu, S. Mirel, R. Oprean, J. Pharm. Biomed. Anal., 2000, 23(1), 77-87.   DOI
18 E. McEvoy, S. Donegan, J. Power, K. Altria, J. Pharm. Biomed. Anal., 2007, 44(1), 137-143.   DOI
19 A.R. Khorrami, A. Rashidpur, Anal. Chim. Acta, 2012, 727, 20-25.   DOI
20 A. Babaei, A.R. Taheri, Sens. Actuators, B, 2013, 176, 543-551.   DOI
21 M. Hasanzadeh, N. Shadjou, E. Omidinia, J. Neurosci. Methods, 2013, 219(1), 52-60.   DOI
22 H. Bagheri, A. Hajian, M. Rezaei, A. Shirzadmehr, J. Hazard. Mater., 2017, 324, 762-772.   DOI
23 H. Bagheri, A. Shirzadmehr, M. Rezaei, H. Khoshsafar, Ionics, 2018, 24(3), 833-843.   DOI
24 M.M. Rahman, J.-J. Lee, J. Electrochem. Sci. Technol., 2019, 10, 185-195.   DOI
25 X.-B. Li, M.M. Rahman, G.-R. Xu, J.-J. Lee, Electrochim. Acta, 2015, 173, 440-447.   DOI
26 J. Yu, T.H. Kim, J. Electrochem. Sci. Technol., 2017, 8(4), 274-281.   DOI
27 P. Viswanathan, R. Ramaraj, Sens. Actuators, B, 2018, 270, 56-63.   DOI
28 M. Sobaszek, K. Siuzdak, J. Ryl, R. Bogdanowicz, G.M. Swain, Sens. Actuators, B, 2020, 306, 127592.   DOI
29 N. Ishler, T. Finucane, E. Borker, Anal. Chem., 1948, 20(12), 1162-1166.   DOI
30 P. Viswanathan, S. Manivannan, R. Ramaraj, RSC Adv., 2015, 5(67), 54735-54741.   DOI
31 a. Gorton, Electroanalysis, 1995, 7(1), 23-45.   DOI
32 B.C. Lourencao, R.A. Medeiros, R.C. Rocha-Filho, L.H. Mazo, O. Fatibello-Filho, Talanta, 2009, 78(3), 748-752.   DOI
33 J.D. Barker, D.J. de CARLE, S. Anuras, Ann. Intern. Med, 1977, 87(3), 299-301.   DOI
34 A. Zwyghuizen-Doorenbos, T.A. Roehrs, L. Lipschutz, V. Timms, T. Roth, Psychopharmacology, 1990, 100(1), 36-39.   DOI
35 Z.M. Khoshhesab, RSC Adv., 2015, 5(115), 95140-95148.   DOI
36 Y. Gao, H. Wang, L. Guo, J. Electroanal. Chem., 2013, 706, 7-12.   DOI
37 O. Cauli, M. Morelli, Behav. Pharmacol., 2005, 16(2), 63-77.   DOI
38 N. Smirnoff, Free Radical Biol. Med., 2018, 122, 116-129.   DOI
39 O.-W. Lau, S.-F. Luk, Y.-M., Analyst, 1989, 114(9), 1047-1051.   DOI
40 N.H. Phong, T.T.T. Toan, M.X. Tinh, T.N. Tuyen, T.X. Mau, D.Q. Khieu, J. Nanomater., 2018, 5348016.
41 M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. Girija, P.D. Pathinettam, Nanosyst.: Phys., Chem., Math., 2016, 7(4), 707-710.
42 S. Duffy, N. Gokce, M. Holbrook, A. Huang, B. Frei, J.F. Keaney Jr, J.A. Vita, The lancet, 1999, 354(9195), 2048-2049.   DOI
43 N. Tripathy, R. Ahmad, H. Kuk, D.H. Lee, Y.-B. Hahn, G. Khang, J. Photochem. Photobiol., B, 2016, 161, 312-317.   DOI
44 A. Mulyasuryani, R.T. Tjahjanto, R.a. Andawiyah, Chemosensors, 2019, 7(4), 49.   DOI
45 S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, J. Phys. Chem. C, 2009, 113(41), 17893-17898.   DOI
46 P. Junploy, S. Thongtem, T. Thongtem, A. Phuruangrat, Superlattices Microstruct., 2014, 74, 173-183.   DOI
47 U. Bhat, S. Meti, Graphene as Energy Storage Material for Supercapacitors, 2020, 64, 181.   DOI
48 B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, Energy Storage Mater., 2020, 24, 22-51.   DOI
49 L.u. Svorc, K. Cinkova, J. Sochr, M. Vojs, P. Michniak, M. Marton, J. Electroanal. Chem., 2014, 728, 86-93.   DOI
50 B. Liu, X. Ouyang, Y. Ding, L. Luo, D. Xu, Y. Ning, Talanta, 2016, 146, 114-121.   DOI
51 H. Zeinali, H. Bagheri, Z. Monsef-Khoshhesab, H. Khoshsafar, A. Hajian, Mater. Sci. Eng. C, 2017, 71, 386-394.   DOI
52 L.M. Yu, X.H. Fan, J.Y. Shui, L. Cao, W. Yan, Adv. Mater. Res., 2012, 532, 70-73.   DOI
53 Q. Zhou, L. Yang, G. Wang, Y. Yang, Biosens. Bioelectron., 2013, 49, 25-31.   DOI
54 R.K. Thareja, S. Shukla, Appl. Surf. Sci., 2007, 253(22), 8889-8895.   DOI
55 Z. Liew, B. Ritz, C. Rebordosa, P.-C. Lee, J. Olsen, JAMA pediatrics, 2014, 168(4), 313-320.   DOI
56 L. Suntornsuk, W. Gritsanapun, S. Nilkamhank, A. Paochom, J. Pharm. Biomed. Anal., 2002, 28(5), 849-855.   DOI
57 M. Romeu-Nadal, S. Morera-Pons, A. Castellote, M. Lopez-Sabater, J. Chromatogr. B, 2006, 830(1), 41-46.   DOI
58 C.H.A. Tsang, H. Huang, J. Xuan, H. Wang, D. Leung, Renewable Sustainable Energy Rev., 2020, 120, 109656.   DOI
59 M. Masjedi-Arani, M. Salavati-Niasari, J. Mol. Liq., 2017, 248, 197-204.   DOI
60 M. Naghizadeh, M.A. Taher, A.-M. Heliyon, 2019, 5(11), e02870.   DOI
61 C. Liangyuan, B. Shouli, Z. Guojun, L. Dianqing, C. Aifan, C.C. Liu, Sens. Actuators, B, 2008, 134(2), 360-366.   DOI
62 T. Jia, J. Zhao, F. Fu, Z. Deng, W. Wang, Z. Fu, F. Meng, Int. J. Photoenergy, 2014, 197824.
63 R. Dharmadasa, A.A. Tahir, K.G.U. Wijayantha, J. Am. Ceram. Soc., 2011, 94(10), 3540-3546.   DOI
64 F. Tadayon, Z. Sepehri, RSC Adv., 2015, 5(8), 65560-65568.   DOI
65 B.J. Sanghavi, A.K. Srivastava, Electrochim. Acta, 2010, 55(28), 8638-8648.   DOI
66 M. Tefera, A. Geto, M. Tessema, S. Admassie, Food Chem., 2016, 210, 156-162.   DOI
67 Y. Wang, T. Wu, C.-y. Bi, Microchim. Acta, 2016, 183(2), 731-739.   DOI
68 M. Krishna, S. Komarneni, Ceram. Int., 2009, 35(8), 3375-3379.   DOI
69 K. Handore, S. Bhavsar, A. Horne, P. Chhattise, K. Mohite, J. Ambekar, N. Pande, V. Chabukswar, J. Macromol. Sci., Part A, 2014, 51(12), 941-947.   DOI
70 M. Amare, S. Admassie, Talanta, 2012, 93, 122-128.   DOI
71 E.S. Gomes, F.R.F. Leite, B.R.L. Ferraz, H.A.J.L. Mourao, A.R. Malagutti, J. Pharm. Anal., 2019, 9(5), 347-357.   DOI
72 H. Rao, Z. Lu, H. Ge, X. Liu, B. Chen, P. Zou, X. Wang, H. He, X. Zeng, Y. Wang, Microchim. Acta, 2017, 184(1), 261-269.   DOI
73 A. Motaharian, F. Motaharian, K. Abnous, M.R.M. Hosseini, M. Hassanzadeh-Khayyat, Anal. Bioanal. Chem., 2016, 408(24), 6769-6779.   DOI
74 B. Rezaei, S. Foroughi-Dehnavi, A.A. Ensafi, Ionics, 2015, 21(10), 2969-2980.   DOI
75 S. Chitravathi, N. Munichandraiah, J. Electroanal. Chem., 2016, 764, 93-103.   DOI
76 F.A. Harraz, M. Faisal, A.E. Al-Salami, A.M. El-Toni, A.A. Almadiy, S.A. Al-Sayari, M.S. Al-Assiri, Mater. Lett., 2019, 234, 96-100.   DOI
77 W. Zeng, F. Martinuzzi, A. MacGregor, J. Pharm. Biomed. Anal., 2005, 36(5), 1107-1111.   DOI
78 K. Ghanbari, S. Bonyadi, J. Electrochem. Sci. Technol., 2020, 11(1), 68-83.   DOI
79 X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, Sens. Actuators, B, 2004, 102(2), 248-252.   DOI