DOI QR코드

DOI QR Code

Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties

Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성

  • Kim, Bo-Young (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Chul-Soon (Department of Materials Science and Engineering, Korea University) ;
  • Park, Joon-Shik (Smart Convergence Sensor Research Center, Korea Electronics Technology Institute) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • 김보영 (고려대학교 공과대학 신소재공학부) ;
  • 이철순 (고려대학교 공과대학 신소재공학부) ;
  • 박준식 (전자부품연구원 차세대융합센서연구센터) ;
  • 이종흔 (고려대학교 공과대학 신소재공학부)
  • Received : 2014.05.26
  • Accepted : 2014.05.30
  • Published : 2014.05.31

Abstract

The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.

Keywords

References

  1. N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuator B-Chem., Vol. 108, pp. 2-14, 2005. https://doi.org/10.1016/j.snb.2004.12.075
  2. D. D. Vuong, G. Sakai, K. Shimanoe, and N. Yamazoe, "Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application", Sens. Actuator B-Chem., Vol. 103, pp. 386-391, 2004. https://doi.org/10.1016/j.snb.2004.04.122
  3. J. Xu, Q. Pan, Y. Shun, and Z. Tian, "Grain size control and gas sensing properties of ZnO gas sensor", Sens. Actuator B-Chem., Vol. 66, pp. 277-279, 2000. https://doi.org/10.1016/S0925-4005(00)00381-6
  4. T. Waitz, T. Wagner, T. Sauerwald, C. D. Kohl, and M. Tiemann, "Ordered mesoporous $In_2O_3$: Synthesis by structure replication and application as a methane gas sensor", Adv. Funct. Mater., Vol. 19, pp. 653-661, 2009. https://doi.org/10.1002/adfm.200801458
  5. A. M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, and J. R. Morante, "Cr-doped $TiO_2$ gas sensor for exhaust $NO_2$ monitoring", Sens. Actuator B-Chem., Vol. 93, pp. 509-518, 2003. https://doi.org/10.1016/S0925-4005(03)00183-7
  6. Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, "Novel fabrication of a $SnO_2$ nanowire gas sensor with high sensitivity", Nanotechnology, Vol. 19, p. 095508, 2008. https://doi.org/10.1088/0957-4484/19/9/095508
  7. I. S. Hwang, S. J. Kim, J. K. Choi, J. J. Jung, D. J. Yoo, K. Y. Dong, B. K. Ju, and J. H. Lee, "Large scale fabrication of highly sensitive $SnO_2$ nanowire network gas sensors by single step vapor phase growth", Sens. Actuator B-Chem., Vol. 165, pp. 97-103, 2012. https://doi.org/10.1016/j.snb.2012.02.022
  8. J. H. Lee, "Gas sensors using hierarchical and hollow oxide nanostructures: Overview", Sens. Actuator B-Chem., Vol. 140, pp.319-336, 2009. https://doi.org/10.1016/j.snb.2009.04.026
  9. H. R. Kim, K. I. Choi, J. H. Lee, and S. A. Akbar, "Highly sensitive and ultra-fast responding gas sensors using selfassembled hierarchical $SnO_2$ spheres", Sens. Actuator B-Chem., Vol. 136, pp. 138-143, 2009. https://doi.org/10.1016/j.snb.2008.11.016
  10. H. J. Kim, J. W. Yoon, K. I. Choi, H. W. Jang, A. Umar, and J. H. Lee, "Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Crdoped NiO hierarchical nanostructures", Nanoscale, Vol. 5, pp. 7066-7073, 2013. https://doi.org/10.1039/c3nr01281f
  11. K. Y. Dong, J. K. Choi, I. S. Hwang, J. W. Lee, B. H. Kang, D. J. Ham, J. H. Lee, and B. K. Ju, "Enhanced $H_2S$ sensing characteristics of Pt doped $SnO_2$ nanofibers sensors with micro heater", Sens. Actuator B-Chem., Vol. 157, pp. 154-161, 2011. https://doi.org/10.1016/j.snb.2011.03.043
  12. W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Z. Wang, X. Xu, S. Li, and C. Wang, "Assembly of Pt nanoparticles on electrospun $In_2O_3$ nanofibers for $H_2S$ detection", J. Colloid and Interface Sci., Vol. 338, pp. 366-370. 2009 https://doi.org/10.1016/j.jcis.2009.06.041
  13. J. W. Shin, S. J. Choi, D. Y. Youn, and I. D, Kim, "Exhaled VOCs sensing properties of $WO_3$ nanofibers functionalized by Pt and $IrO_2$ nanoparticles for diagnosis of diabetes and halitosis", J. Electroceram., Vol. 29, pp. 106-116. 2012. https://doi.org/10.1007/s10832-012-9755-y

Cited by

  1. Chemical Sensors Array Optimization Based on Wilks Lamda Technique vol.23, pp.5, 2014, https://doi.org/10.5369/JSST.2014.23.5.299
  2. Trimethylamine Sensing Characteristics of Molybdenum doped ZnO Hollow Nanofibers Prepared by Electrospinning vol.24, pp.6, 2015, https://doi.org/10.5369/JSST.2015.24.6.419
  3. Investigation of Chemical Sensor Array Optimization Methods for DADSS vol.25, pp.1, 2016, https://doi.org/10.5369/JSST.2016.25.1.13
  4. A Step-wise Elimination Method Based on Euclidean Distance for Performance Optimization Regarding to Chemical Sensor Array vol.24, pp.4, 2015, https://doi.org/10.5369/JSST.2015.24.4.258