Browse > Article
http://dx.doi.org/10.5369/JSST.2015.24.3.151

Selective NO2 Sensors Using MoS2-MoO2 Composite Yolk-shell Spheres  

Jeong, Seong Yong (Department of Materials Science and Engineering, Korea University)
Choi, Seung Ho (Department of Materials Science and Engineering, Korea University)
Yoon, Ji-Wook (Department of Materials Science and Engineering, Korea University)
Won, Jong Min (Department of Materials Science and Engineering, Korea University)
Kang, Yun Chan (Department of Materials Science and Engineering, Korea University)
Park, Joon-Shik (Smart Convergence Sensor Research Center, Korea Electronic Technology Institute (KETI))
Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
Publication Information
Journal of Sensor Science and Technology / v.24, no.3, 2015 , pp. 151-154 More about this Journal
Abstract
The gas sensing characteristic of $MoS_2-MoO_2$ composite yolk-shell spheres were investigated. $MoO_3$-carbon composite spheres were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Mo-source and sucrose in nitrogen, which were converted into $MoO_3$ yolk-shell spheres by heat treatment at $400^{\circ}C$ in air. Subsequently, $MoS_2-MoO_2$ composite yolk-shell spheres were prepared by the partial sulfidation of $MoO_3$. The $MoS_2-MoO_2$ composite yolk-shell spheres showed relatively low and irreversible gas sensing characteristics at < $200^{\circ}C$. In contrast, the sensor showed high and reversible response (S=resistance ratio) to 5 ppm $NO_2$ (S=14.8) at $250^{\circ}C$ with low cross-responses (S=1.17-2.13) to other interference gases such as ethanol, CO, xylene, toluene, trimethylamine, $NH_3$, $H_2$, and HCHO. The $MoS_2-MoO_2$ composite yolk-shell spheres can be used as reliable sensors to detect $NO_2$ in a selective manner.
Keywords
Gas sensors; $MoS_2$ Yolk-shell Spheres; $NO_2$ Sensor; Selectivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Hwang, H. Kim, and J. Cho, "$MoS_2$ nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials", Nano Lett., Vol. 11, pp. 4826-4830, 2011.   DOI
2 H. Li, M. Si, S. Najmaei, A. T. Neal, Y. Du, P. M. Ajayan, J. Lou, and P. D. Ye, "Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films", Nano Lett., Vol. 13, pp. 2640-2646, 2013.   DOI
3 M. Donarelli, S. Prezioso, F. Perrozzi, F. Busti, M. Nardone, L. Giancaterini, C. Cantalini, and L Ottaviano, "Response to $NO_2$ and other gases of resistive chemically exfoliated $MoS_2$-based gas sensors", .Sens. Actuators B, Vol. 207, pp. 602-613, 2015.   DOI
4 H. Li, J. Wu, Z. Yin, and H. Zhang, "Preparation and applications of mechanically exfoliated single-layer and multilayer $MoS_2$ and $WSe_2$ nanosheets", Acc. Chem. Res., Vol. 47, pp. 1067-1075, 2014.   DOI
5 J. K. Miremadi, R. C. Singh, S. R. Morrison, and J. Colbow, "A highly sensitive and selective hydrogen sensor from thick oriented films of $MoS_2$", Appl. Phys. A, Vol. 63, pp. 271-275, 1996.
6 B. Cho, M. G. Han, M. Choi, J. Yoon, A. R. Kim, Y.-J. Lee, S.-G. Park, J.-D. Kwon, C. S. Kim, M. Song, Y. Jeong, K.- S. Nam, S. Lee, T. J. Yoo, C. G. Kang, B. H. Lee, P. M. Ajayan, and D.-H. Kim, "Charge-transfer-based gas sensing using atomic-layer $MoS_2$", Sci. Rep., Vol. 5, pp. 8052, 2015.   DOI
7 Y. N, Ko, Y. C. Kang, and S. B. Park, "Superior electrochemical properties of $MoS_2$ powders with a $MoS_2$@void@$MoS_2$ configuration", Nanoscale, Vol. 6, pp. 4508-4512, 2014.   DOI
8 Y. N. Ko, S. B. Park, J.-H. Lee, and Y. C. Kang, "Comparison of the electrochemical properties of yolk-shell and dense structured $CoFe_2O_4$ powders prepared by a spray pyrolysis process", RSC Adv., Vol. 4, pp. 40188-40192, 2014.   DOI
9 Y. J. Hong, J.-W. Yoon, J.-H. Lee, and Y. C. Kang, "Onepot synthesis of Pd-loaded $SnO_2$ yolk-shell nanostructures for ultraselective methyl benzene sensors," Chem. -Eur. J., Vol. 20, pp. 2737-2741, 2014.   DOI
10 J.-W. Yoon, Y. J. Hong, Y. C. Kang, and J.-H. Lee, "High performance chemiresistive $H_2S$ sensors using Ag-loaded $SnO_2$ yolk-shell nanostructures," RSC Adv., Vol. 4, pp. 16067-16074, 2014.   DOI
11 Q. Yue, Z. Shao, S. Chang, and J. Li, "Adsorption of gas molecules on monolayer $MoS_2$ and effect of applied electric field" Nano Res. Lett., Vol. 8, pp. 425-431, 2013.   DOI
12 Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.- T. Liang, C.-W. Chu, and L.-J. Li, "Wafer-scale $MoS_2$ thin layers prepared by $MoO_3$ sulfurization," Nanoscale, Vol. 4, pp. 6637-6641, 2012.   DOI
13 I. H. Cho, Y. C. Kang, and S. B Park, "Thiophene hydrodesulfurization of unsupported Co-Mo catalysts prepared by spray pyrolysis method", Korean J. Chem. Eng., Vol. 35, pp. 814-818, 1997.
14 Y. H. Cho, Y. N. Ko, Y. C. Kang, I.-D Kim, and J. H. Lee, "Ultraselective and ultrasensitive detection of trimethylamine using $MoO_3$ nanoplates prepared by ultrasonic spray pyrolysis", Sens. Actuators B, Vol. 195, pp. 189-196, 2014.   DOI