DOI QR코드

DOI QR Code

Fabrication of UV Sensor Based on ZnO Hierarchical Nanostructure Using Two-step Hydrothermal Growth

2단계 수열합성을 이용한 ZnO 계층 나노구조 기반 UV 센서 제작

  • Woo, Hyeonsu (Department of Mechanical Engineering, POSTECH) ;
  • Kim, Geon Hwee (Department of Mechanical Engineering, POSTECH) ;
  • Kim, Suhyeon (Department of Mechanical Engineering, POSTECH) ;
  • An, Taechang (Department of Mechanical Robotics Engineering, Andong National University) ;
  • Lim, Geunbae (Department of Mechanical Engineering, POSTECH)
  • 우현수 (포항공과대학교 기계공학과) ;
  • 김건휘 (포항공과대학교 기계공학과) ;
  • 김수현 (포항공과대학교 기계공학과) ;
  • 안태창 (국립안동대학교 기계로봇공학과) ;
  • 임근배 (포항공과대학교 기계공학과)
  • Received : 2020.05.06
  • Accepted : 2020.05.20
  • Published : 2020.05.31

Abstract

Ultraviolet (UV) sensors are widely applied in industrial and military fields such as environmental monitoring, medicine and astronomy. Zinc oxide (ZnO) is considered as one of the promising materials for UV sensors because of its ease of fabrication, wide bandgap (3.37 eV) and high chemical stability. In this study, we used the hydrothermal growth of ZnO to form two types of ZnO nanostructures (Nanoflower and nanorod) and applied them to a UV sensor. To improve the performance of the UV sensor, the hydrothermal growth was used in a two-step process for fabricating ZnO hierarchical nanostructures. The fabricated ZnO hierarchical nanostructure improved the performance of the UV sensor by increasing the ratio of volume to surface area and the number of nanojunctions compared to one-step hydrothermal grown ZnO nanostructure. The UV sensor based on the ZnO hierarchical nanostructure had a maximum photocurrent of 44 ㎂, which is approximately 3 times higher than that of a single nanostructure. The UV sensor fabrication method presented in this study is simple and based on the hydrothermal solution process, which is advantageous for large-area production and mass production; this provides scope for extensive research in the field of UV sensors.

Keywords

References

  1. H. Ohta, and H. Hosono, "Transparent oxide optoelectronics", Mater. Today, Vol. 7, No. 6, pp. 42-51, 2004. https://doi.org/10.1016/S1369-7021(04)00288-3
  2. M. Razeghi, and A. Rogalski, "Semiconductor ultraviolet detectors", J. Appl. Phys., Vol. 79, No. 10, pp. 7433-7473, 1996. https://doi.org/10.1063/1.362677
  3. T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, and D. Golberg, "A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors", Sensors, Vol. 9, No. 8, pp. 6504-6529, 2009. https://doi.org/10.3390/s90806504
  4. S. C. Moon, J. S. Lee, K. J. No, S. J. Yang, and S. E. Lee, "A Study on the Material Characteristics of the NiO/ZnO Ultraviolet Sensor Based on Solution Precess", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 30, No. 8, pp. 508- 513, 2017. https://doi.org/10.4313/JKEM.2017.30.8.508
  5. Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications", J. Phys. Condens. Matter., Vol. 16, pp. R829-R858, 2004. https://doi.org/10.1088/0953-8984/16/25/R01
  6. T. H. Moon, M. C. Jeong, W. Lee, and J. M. Myoung, "The fabrication and characterization of ZnO UV detector", Appl. Surf. Sci., Vol. 240, No. 1-4, pp. 280-285, 2005. https://doi.org/10.1016/j.apsusc.2004.06.149
  7. S. Kim, G. H. Kim, H. Woo, T. An, and G. Lim, "Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels", ACS Omega, Vol. 5, No. 7, pp. 3144-3150, 2020. https://doi.org/10.1021/acsomega.9b02524
  8. G. H. Kim, T. An, and G. Lim, "Bioinspired Structural Colors Fabricated with ZnO Quasi-Ordered Nanostructures", ACS Appl. Mater. Interfaces, Vol. 9, No. 22, pp. 19057-19062, 2017. https://doi.org/10.1021/acsami.6b15892
  9. T. Y. Ma, "Effects of Precursor Concentration on the Growth of ZnO Nanorods", Trans. Korean. Inst. Elect. Eng., Vol. 65, No. 11, pp. 1835-1839, 2016. https://doi.org/10.5370/KIEE.2016.65.11.1835
  10. I. Y. Y. Bu, and C. C. Yang, "High-performance ZnO nanoflake moisture sensor", Superlattices Microstruct., Vol. 51, No. 6, pp. 745-753, 2012. https://doi.org/10.1016/j.spmi.2012.03.009
  11. Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors", J. Appl. Phys., Vol. 84, No. 18, pp. 3654-3656, 2019.
  12. S. O. Brien, L. H. K. Koh, and G. M. Crean, "ZnO thin films prepared by a single step sol-gel process", Thin Solid Films, Vol. 516, No. 7, pp. 1391-1395, 2008. https://doi.org/10.1016/j.tsf.2007.03.160
  13. Y. Zhang, B. Lin, X. Sun, and Z. Fu, "Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrate by the sol-gel process", Appl. Phys. Lett., Vol. 86, No. 13, pp. 131910(1)-131910(3), 2005. https://doi.org/10.1063/1.1891288
  14. S. F. Akhtarianfar, A. Khayatian, R. Shakernejad, M A. Kashi, and S. W. Hong, "Improved sensitivity of UV sensors in hierarchically structured arrays of network-loaded ZnO nanorods via optimization techniques". RSC Adv., Vol. 7, No. 51, pp. 32316-32326, 2017. https://doi.org/10.1039/C7RA04773H
  15. M. Guo, P. Diao, X. Wang, and S. Cai, "The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films", J. Solid State Chem., Vol. 178, No. 10, pp. 3210-3215, 2005. https://doi.org/10.1016/j.jssc.2005.07.013
  16. F. Yi, Q. Liao, X. Yan, Z. Bai, Z. Wang, X. Chen, Q. Zhang, Y. Huang, and Y. Zhang, "Simple fabrication of a ZnO nanorod array UV detector with a high performance", Physica E, Vol. 61, pp. 180-184, 2014. https://doi.org/10.1016/j.physe.2014.03.025
  17. M. R. Alenezi, S. J. Henley, and S. R. P. Silva, "On-chip Fabrication of High Performance Nanostructured ZnO UV Detectors", Sci. Rep., Vol. 5, pp. 8516(1)-8516(9), 2014. https://doi.org/10.1038/srep08516
  18. S. K. Panda, and C. Jacob, "Preparation of transparent ZnO thin films and their application in UV sensor devices", Solid-State Electron., Vol. 73, pp. 44-50, 2012. https://doi.org/10.1016/j.sse.2012.03.004
  19. B. Liu, and H. C. Zeng, "Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm", J. Am. Chem. Soc., Vol. 125, No. 15, pp. 4430-4431, 2003. https://doi.org/10.1021/ja0299452
  20. C. Pacholski, A. Kornowski, and H. Weller, "Self-Assembly of ZnO: From Nanodots to Nanorods", Angew. Chem.-Int. Edit., Vol. 41, No. 7, pp. 1188-1191, 2002. https://doi.org/10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5