• Title/Summary/Keyword: $O_{3}$ concentration

Search Result 5,140, Processing Time 0.047 seconds

Study on the Adsorption of Carbon Dioxide in Passenger Cabin Using $Al_2O_3$ Adsorbent ($Al_2O_3$ 흡착제를 이용한 객실용 이산화탄소 흡착연구)

  • Cho, Young-Min;Choi, Jin-Sik;Lee, Ji-Yun;Kwon, Soon-Bark;Park, Duck-Shin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.138-141
    • /
    • 2011
  • Carbon dioxide concentration of railroad passenger cabin is obliged to be kept lower than guideline values of 'Indoor air quality guideline for public transportations', but actual carbon dioxide concentration frequently exceeds this guideline value during the morning and evening rush hours. For improving comfortability and satisfaction of passengers, concentration control method using $Al_2O_3$ adsorbents was presented. The adsorbent is made from $Al_2O_3$ and LiOH. $Al_2O_3$ perform as a frame and LiOH as a chemical adsorbent. The adsorbent performance experiment was carried out by measuring concentration change of Carbon dioxide in terms of flow, initial concentration and amount of adsorbent. It is expexted that the obtained results will be used to lower carbon dioxide concentration of railroad passenger cabin.

  • PDF

Effect of Removal of Power Plant Emissions on the characteristics of Ozone Concentration Changes in Summer (화력발전소 배출량 제거에 따른 여름철 O3 농도의 변화 특성)

  • Kim, Dongjin;Jeon, Wonbae;Park, Jaehyeong;Mun, Jeonghyeok
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • In this study, the changes in ozone (O3) concentrations due to the removal of power plant emissions were analyzed using a community multi-scale air quality (CMAQ) model. Two different CMAQ model simulations, one considering the emissions from the Hadong power plant and one without considering the emissions, were conducted to investigate the effect of the emissions on the changes in the O3 concentrations in the surrounding areas. Subsequently, the CMAQ simulations exhibited an increase in the O3 concentration (25.24%) despite a decrease in the NOx (-18.87%) and volatile organic carbon (VOC, -11.27%) concentrations, which are major O3 precursors. The changes in the NO and O3 concentrations due to the removal of power plant emissions presented a strong negative correlation (r= -0.72). This indicated that the increase in the O3 concentration was mainly attributed to the significantly decreased NO concentration, thus, mitigating the O3 titration reaction (NO+O3→NO2+O2). Additionally, due to the VOC-limited (i.e., NOx-saturated) conditions in the study region, NO affected the O3 concentration, indicating that the O3 concentrations in a particular region are not only proportional to the increase or decrease in emissions. Therefore, an in-depth understanding of the chemical O3 production and loss in a particular region is necessary to accurately evaluate the effect of emission control on the changes in the O3 concentration.

Luminescence and Concentration Quenching Properties of BaZrO3:Eu3+ Red-Emitting Phosphors (BaZrO3:Eu3+ 적색 형광체의 발광과 농도 소광 특성)

  • Nguyen Thi Kim Ngan;Shinho Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.274-279
    • /
    • 2024
  • Eu3+-doped BaZrO3 (BaZrO3:Eu3+) phosphor powders were prepared using a solid-state reaction by changing the molar concentration of Eu3+ within the range of 0.5 to 30 mol%. Irrespective of the molar concentration of Eu3+ ions, the crystal structures of all the phosphors were cubic. The excitation spectra of BaZrO3:Eu3+ phosphors consisted of an intense broad band centered at 277 nm in the range of 230~320 nm. The emission spectra were composed of a dominant orange band at 595 nm arising from the 5D07F1 magnetic dipole transition of Eu3+ and two weak emission bands centered at 574 and 615 nm, respectively. As the concentration of Eu3+ increased from 0.5 to 10 mol%, the intensities of all the emission bands gradually increased, approached maxima at 10 mol% of Eu3+ ions, and then showed a decreasing tendency with further increase in the Eu3+ ions due to the concentration quenching. The critical distance between neighboring Eu3+ ions for concentration quenching was calculated to be 11.21 Å, indicating that dipole-dipole interaction was the main mechanism of concentration quenching of BaZrO3:Eu3+ phosphors. The results suggest that the orange emission intensity can be modulated by doping the appropriate concentration of Eu3+ ions.

Structural, Optical and Electrical Properties of ZnO Thin Films with Zn Concentration (Zn 농도변화에 따른 ZnO 박막의 구조, 광학 및 전기적 특성 연구)

  • 한호철;김익주;태원필;김진규;심문식;서수정;김용성
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1113-1119
    • /
    • 2003
  • We used isopropanol which has low boiling point to prepare thin films at low temperature and changed mole concentration of zinc acetate from 0.3 to 1.3 mol/l. The structural, optical and electrical properties of ZnO thin films with Zn content were investigated. ZnO thin films highly oriented along the c-axis were obtained at Zn concentration of 0.7 mol/l. ZnO thin films with Zn concentration of 0.7 mol/l showed a homogeneous surface layer of nano structure. The transmittance of ZnO thin films by UV-vis. measurement was about 87% under the Zn concentration of 0.7 mol/l, but rapidly decreased over the 1.0 mol/l. The optical band gap energy was obtained from 3.07 to 3.22 eV which is very close to the band gap of bulk ZnO (3.2 eV). The electrical resistivity of ZnO thin films was about 150 $\Omega$-cm that shows little difference with Zn concentration. I-V curves of ZnO thin films exhibited typical ohmic contact properties.

The exploration of U(VI) concentration improvement in carbonate medium for alkaline reprocessing process

  • Chenxi Hou;Mingjian He;Meng Zhang;Haofan Fang;Hui He;Caishan Jiao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.419-425
    • /
    • 2024
  • The purpose of this study is to improve the concentration of U(VI) in carbonate solution reasonably, which to improve the application potential of the alkaline reprocessing processes. The dissolution behavior of U3O8 in carbonate peroxide solutions was investigated under different conditions, including pH, carbonate concentration, and solid-liquid ratio. The results showed that the dissolution rate of U3O8 increased with the increase of pH from 8 to 11 in the mixed carbonate solution containing 0.5 mol/L H2O2. The role of carbonate ions in the dissolution of U3O8 was further elucidated by observing the dissolution of UO4⋅4H2O in carbonate solutions. Furthermore, the concentration of U(VI) in 3 mol/L Na2CO3 solution was successfully increased to 350 g/L under ultrasonic-assisted conditions at 60 ℃ and a solid-liquid ratio at 1/2 g/mL. Meanwhile, it is suggested that increasing the concentration of carbonate ions can improve the stability of the dissolved solution containing uranyl peroxycarbonate complex.

Hydrothermal Synthesis and Characterization of BaTiO3 Fine Powders (BaTiO3 미세 분말의 수열합성 및 특성분석)

  • Park, Jung-Hoon;Park, Sangdo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.448-454
    • /
    • 2007
  • Hydrothermal synthesis was conducted with starting material as Barium hydroxide and hydrous titania ($TiO_2{\cdot}xH_2O$) to obtain barium titanate fine Powder. The conversion, crystal structure and properties of as-prepared powder were investigated according to reaction temperature, time and concentration. The effect of variables on conversion was in order of time < temperature < concentration and the maximum conversion reached to 99.5% in the case of hydrothermal synthesis at $180^{\circ}C$ for 2 h with 2.0 M reactant concentration. At low concentration such as 0.25 M, formation of unreacted $BaCO_3$ and $TiO_2$ was not inevitable at even high reaction temperature and these components converted into $BaTi_2O_5$ at high temperature and remained as impurity. As concentration of reactant increased, the size of as-synthesized $BaTiO_3$ powder deceased and Ba/Ti molar ratio approached into 1, showing Ba/Ti ratio of $1{\pm}0.005$ for reaction at $180^{\circ}C$ for 2 h with 2.0 M concentration.

Effect of the Composition of a Reduced Fuel on the Concentration Change of UCl3 in the Electrorefiner (금속전환체 조성의 전해정련 전해조 UCl3 농도변화에 대한 영향)

  • Paek, Seungwoo;Lee, Chang-Hwa;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.347-353
    • /
    • 2019
  • The composition of the reduced fuel produced in the electrolytic reduction process of pyroprocessing affects the concentration change of $UCl_3$, an important operating variable of the electrorefining process. In this study, we examined the concentration change of $UCl_3$ in the electrorefiner according to the content of TRU and RE elements in the reduced fuel and the concentration of $Li_2O$ introduced in the electrorefiner accompanied with the reduced fuel. Considering only the TRU and RE elements, the concentration of $UCl_3$ decreased with increasing the number of electrorefining operation batch. In order to operate one campaign (20 batches) of electrorefining process, it was found that additional injection of $UCl_3$ should be conducted more than 3 times. On the other hand, the concentration of $UCl_3$ in the electrorefiner changed significantly depending on the concentration of $Li_2O$ and, accordingly the number of operable electrorefining batches decreased rapidly, showing that the concentration of $Li_2O$ is an important operating variable in electrorefining. Therefore, the results of this study show that to maintain the concentration of $UCl_3$ in the electrorefiner, the operation mode should be set by taking into account the effect of $Li_2O$ as well as the TRU and RE elements contained in the reduced fuel.

Determination of Hydroperoxyl/superoxide Anion Radical (HO2·/O2·-) Concentration in the Decomposition of Ozone Using a Kinetic Method

  • Kwon, Bum-Gun;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1785-1790
    • /
    • 2006
  • A novel kinetic method for determination of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition in water is described. In this study, potential interferences of $O_3$ and the hydroxyl radicals, $^{\cdot}OH_{(O3)}$, are suppressed by $HSO_3{^-}/SO_3{^{2-}}$. $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ formed in ozone decomposition reduces $Fe^{3+}$-EDTA into $Fe^{2+}$-EDTA and subsequently the well-known Fenton-like (FL) reaction of $H_2O_2$ and $Fe^{2+}$-EDTA produces the hydroxyl radicals, $^{\cdot}OH_{(FL)}$. Benzoic acid (BA) scavenges $^{\cdot}OH_{(FL)}$ to produce OHBA, which are analyzed by fluorescence detection (${\lambda}_{ex}=320nm$ and ${\lambda}_{ex}=400nm$). The concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition has been determined by the novel kinetic method using the experimentally determined half-life ($t_{1/2}$). The steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ is proportional to the $O_3$ concentration at a given pH. However, the steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition is inversely proportional to pH values. This pH dependence is due to significant loss of $O_2{^{{\cdot}-}}$ by $O_3$ at higher pH conditions. The steady-state concentrations of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ are in the range of $2.49({\pm}0.10){\times}10^{-9}M(pH=4.17){\sim}3.01({\pm}0.07){\times}10^{-10}M(pH=7.59)$ at $[O_3]_o=60{\mu}M$.

Characteristics of Ozone Concentration Weekend Effect in Busan Area (부산지역 오존농도의 주말 효과 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.861-871
    • /
    • 2014
  • This study analyzes the characteristics of ozone weekend effect(OWE) in Busan. $O_3$ concentration on Sunday was over 10% higher than that on weekdays in all areas except for Kwangbokdong, Taejongdae, and Joadong. Such a difference was higher in the industrial area than in the residential area. $O_3$ generation was facilitated by the decrease in $NO_X$ emission on Sunday in VOC-limited regime where the VOC/$NO_X$ ratio is low. Low NO concentration in the Sunday morning decreased inhibition of $O_3$. NO-$O_3$ crossover time on Sunday was shorter than that on weekdays which in turn extended the accumulated duration of $O_3$. Future studies can include whether the entire Busan is VOCS-limited or the coastal area is VOCS-limited while the inland area is $NO_X$-limited.

Effective Oxygen-Defect Passivation in ZnO Thin Films Prepared by Atomic Layer Deposition Using Hydrogen Peroxide

  • Wang, Yue;Kang, Kyung-Mun;Kim, Minjae;Park, Hyung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.302-307
    • /
    • 2019
  • The intrinsic oxygen-vacancy defects in ZnO have prevented the preparation of p-type ZnO with high carrier concentration. Therefore, in this work, the effect of the concentration of H2O2 (used as an oxygen source) on the oxygen-vacancy concentration in ZnO prepared by atomic layer deposition was investigated. The results indicated that the oxygen-vacancy concentration in the ZnO film decreased by the oxygen-rich growth conditions when using H2O2 as the oxygen precursor instead of a conventional oxygen source such as H2O. The suppression of oxygen vacancies decreased the carrier concentration and increased the resistivity. Moreover, the growth orientation changed to the (002) plane, from the combined (100) and (002) planes, with the increase in H2O2 concentration. The passivation of oxygen-vacancy defects in ZnO can contribute to the preparation of p-type ZnO.