DOI QR코드

DOI QR Code

Effect of Removal of Power Plant Emissions on the characteristics of Ozone Concentration Changes in Summer

화력발전소 배출량 제거에 따른 여름철 O3 농도의 변화 특성

  • Kim, Dongjin (Division of Earth Environmental System, Pusan National University) ;
  • Jeon, Wonbae (Department of Atmospheric Sciences, Pusan National University) ;
  • Park, Jaehyeong (Division of Earth Environmental System, Pusan National University) ;
  • Mun, Jeonghyeok (Division of Earth Environmental System, Pusan National University)
  • 김동진 (부산대학교 지구환경시스템학부) ;
  • 전원배 (부산대학교 대기환경과학과) ;
  • 박재형 (부산대학교 지구환경시스템학부) ;
  • 문정혁 (부산대학교 지구환경시스템학부)
  • Received : 2021.03.18
  • Accepted : 2021.04.16
  • Published : 2021.04.30

Abstract

In this study, the changes in ozone (O3) concentrations due to the removal of power plant emissions were analyzed using a community multi-scale air quality (CMAQ) model. Two different CMAQ model simulations, one considering the emissions from the Hadong power plant and one without considering the emissions, were conducted to investigate the effect of the emissions on the changes in the O3 concentrations in the surrounding areas. Subsequently, the CMAQ simulations exhibited an increase in the O3 concentration (25.24%) despite a decrease in the NOx (-18.87%) and volatile organic carbon (VOC, -11.27%) concentrations, which are major O3 precursors. The changes in the NO and O3 concentrations due to the removal of power plant emissions presented a strong negative correlation (r= -0.72). This indicated that the increase in the O3 concentration was mainly attributed to the significantly decreased NO concentration, thus, mitigating the O3 titration reaction (NO+O3→NO2+O2). Additionally, due to the VOC-limited (i.e., NOx-saturated) conditions in the study region, NO affected the O3 concentration, indicating that the O3 concentrations in a particular region are not only proportional to the increase or decrease in emissions. Therefore, an in-depth understanding of the chemical O3 production and loss in a particular region is necessary to accurately evaluate the effect of emission control on the changes in the O3 concentration.

본 연구에서는 광화학 대기질 모델인 CMAQ을 활용해 화력발전소 배출량 제거에 따른 O3 농도의 변화 특성을 분석하였다. 하동 화력발전소를 대상으로 주변 지역의 O3 농도 변화에 대한 발전소 배출량의 영향을 조사하기 위해 하동 화력발전소의 배출량 제거 전과 후의 CMAQ 수치 모의를 수행하였다. 수치 모의 결과 O3의 주요 전구 물질인 NOx (-18.87%)와 VOCs (-11.27%)의 농도가 감소한 반면에 O3 (25.24%)의 농도는 증가한 것으로 나타났다. 화력발전소 배출량 제거로 인한 NO와 O3 농도의 상대적인 변화를 비교해 본 결과 높은 음의 상관관계(R= -0.72)를 나타내는 것이 확인되었다. 이러한 결과는 O3의 농도 증가가 NO 농도 감소로 인한 O3의 적정 효과 완화로 설명 될 수 있음을 의미한다. 해당 지역의 O3의 농도 증가가 NO의 농도 감소에 주로 영향을 받은 이유는 해당 지역이 VOC-limited (i.e., NOx-saturated) 지역이기 때문으로 분석되었다. 이러한 결과는 특정 지역의 O3의 농도가 단순히 배출량의 증감에 따라 비례하게 나타나지 않을 수 있다는 것을 암시한다. 따라서 화력발전소 배출량 저감 조치로 인한 대기 중 O3 농도 개선 효과를 정확히 예측 및 평가하기 위해서는 지역 별 O3의 생성 및 소멸 기작에 대한 심도 있는 이해가 필요하다.

Keywords

References

  1. Al-Rahbi, A. S., Williams, P. T., 2016, Production of activated carbons from waste tyres for low temperature NOx control, Waste Management, 49, 188-195. https://doi.org/10.1016/j.wasman.2016.01.030
  2. Byun, D., Schere, K. L., 2006, Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling System, Applied Mechanics Reviews, 59, 51-77. https://doi.org/10.1115/1.2128636
  3. Diao, B., Ding, L., Zhang, Q., Na, J., Cheng, J., 2020, Impact of urbanization on PM2.5-related health and economic loss in China 338 cities, International Journal of Environmental Research and Public Health, 17, 990. https://doi.org/10.3390/ijerph17030990
  4. Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal, L., Hu, Y., Pickering, K. E., Retscher, C., Allen, D. J., Crawford, J. H., 2010, Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation, Atmospheric Environment, 44, 2213-2223. https://doi.org/10.1016/j.atmosenv.2010.03.010
  5. Frost, G. J., McKeen, S. A., Trainer, M., Ryerson, T. B., Neuman, J. A., Roberts, J. M., Swanson, A., Holloway, J. S., Sueper, D. T., Fortin, T., Parrish, D. D., Fehsenfeld, F. C., Flocke, F., Peckham, S. E., Grell, G. A., Kowal, D., Cartwright, J., Auerbach, N., Habermann, T., 2006, Effects of changing power plant NOx emissions on ozone in the eastern United States: proof of concept, Journal of Geophysical Research, 111, D12306. https://doi.org/10.1029/2005JD006354
  6. Han, X., Zhu, L., Wang, S., Meng, X., Zhang, M., Hu, J., 2018, Modeling study of impacts on surface ozone of regional transport and emissions reductions over North China Plain in summer 2015, Atmospheric Chemistry and Physics, 18, 12207-12221. https://doi.org/10.5194/acp-18-12207-2018
  7. Jeon, W. B., Lee, H. W., Lee, S. H., Choi, H. J., Kim, D. H., Park, S. Y., 2011, Numerical study on the impact of meteorological input data on air quality modeling on high ozone episode at coastal region, Journal Korean Society for Atmospheric Environment, 27, 30-40. https://doi.org/10.5572/KOSAE.2011.27.1.030
  8. Jeon, W. B., Lee, S. H., Lee, H. W., Kim, H. G., 2012, Process analysis of the impact of atmospheric recirculation on consecutive high-O3 episodes over the Seoul Metropolitan Area in the Korean Peninsula, Atmospheric Environment, 63, 213-222. https://doi.org/10.1016/j.atmosenv.2012.09.031
  9. Jeon, W., Choi, Y., Souri, A. H., Roy, A., Diao, L., Pan, S., Lee, H. W., Lee, S. H., 2018, Identification of chemical fingerprints in long-range transport of burning induced upper tropospheric ozone from Colorado to the North Atlantic Ocean, Science of the Total Environment, 613-614, 820-828. https://doi.org/10.1016/j.scitotenv.2017.09.177
  10. Jeon, W., Lee, H. W., Lee, T. J., Yoo, J. W., Mun, J., Lee, S. H., Choi, Y., 2019, Impact of varying wind patterns on PM10 concentrations in the Seoul Metropolitan Area in South Korea from 2012 to 2016, Journal of Applied Meteorology and Climatology, 58, 2743-2754. https://doi.org/10.1175/JAMC-D-19-0102.1
  11. Jeong, Y. M., Lee, S. H., Lee, H. W., Jeon, W. B., 2012, Numerical study on the process analysis of ozone production due to emissions reduction over the Seoul Metropolitan Area, Journal of the Environmental Sciences, 21, 339-349. https://doi.org/10.5322/JES.2012.21.3.339
  12. Jimenez, P., Baldasano, J. M., 2004, Ozone response to precursor controls in very complex terrains: Use of photochemical indicators to assess O3-NOx-VOC sensitivity in the northeastern Iberian Peninsula, Journal of Geophysical Research, 109, D20309. https://doi.org/10.1029/2004jd004985
  13. Jimenez, P., Parra, R., Gasso, S., Baldasano, J. M., 2005, Modeling the ozone weekend effect in very complex terrains: a case study in the Northeastern Iberian Peninsula, Atmospheric Environment, 39, 429-444. https://doi.org/10.1016/j.atmosenv.2004.09.065
  14. Kim, B. U., Kim, O., Kim, H. C., Kim, S., 2016, Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea, Journal of the Air & Waste Management Association, 66, 863-873. https://doi.org/10.1080/10962247.2016.1175392
  15. Kim, K. W., Lee, S. M., Hong, S. C., 2014, A study on characterization for catalytic oxidation of nitrogen monoxide over Mn/TiO2 catalyst, Applied Chemistry for Engineering, 25, 474-480. https://doi.org/10.14478/ace.2014.1061
  16. Kim, S., 2011, Ozone simulations over the Seoul metropolitan area for a 2007 June episode, part V: application of CMAQ-HDDM to predict ozone response to emission change, Journal of Korean Society for Atmospheric Environment, 27, 772-790. https://doi.org/10.5572/KOSAE.2011.27.6.772
  17. Kim, S., Lee, C., 2011, Estimating Influence of Local and Neighborhood Emissions on Ozone Concentrations over the Kwang-Yang Bay based on Air Quality Simulations for a 2010 June Episode, Journal of Korean Society for Atmospheric Environment, 27, 504-522. https://doi.org/10.5572/KOSAE.2011.27.5.504
  18. Lee, D. G., Lee, Y. M., Jang, K., Yoo, C., Kang, K., Lee, J. H., Jung, S., Park, J., Lee, S. B., Han, J., Hong, J., Lee, S., 2011, Korean national emissions inventory system and 2007 air pollutant emissions, Asian Journal of Atmospheric Environment, 5, 278-291. https://doi.org/10.5572/ajae.2011.5.4.278
  19. Li, M., Zhang, Q., Kurokawa, J. i., Woo, J. H., He, K. B., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B., 2017, MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmospheric Chemistry and Physics, 17, 935-963. https://doi.org/10.5194/acp-17-935-2017
  20. Melkonyan, A., Kuttler, W., 2012, Long-term analysis of NO, NO2 and O3 concentrations in North Rhine-Westphalia, Germany, Atmospheric Environment, 60, 316-326. https://doi.org/10.1016/j.atmosenv.2012.06.048
  21. Ministry of Environment (MOE), 2019, Fine dust comprehensive management plan, http://me.go.kr/home/web/policy_data/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=10262&orgCd=&condition.code=A3&condition.deleteYn=N&seq=7399 (accessed on Nov.5, 2019).
  22. Seinfeld, J. H., 1989, Urban air pollution: state of the science, Science, 243, 745-752. https://doi.org/10.1126/science.243.4892.745
  23. Shamshad A., Fuelkar M. H., Bhawana P., 2012, Impact of coal based thermal power plant on environment and its mitigation measure, International Research Journal of Environment Sciences, 1, 60-64.
  24. Shon, Z. H., Song, S. K., Lee, G. W., 2010, Photochemical analysis of ozone levels in the gulf of Gwangyang in the spring and summer of 2009, Journal of Korean Society for Atmospheric Environment, 26, 161-176. https://doi.org/10.5572/KOSAE.2010.26.2.161
  25. Si, T., Wang, C., Yan, X., Zhang, Y., Ren, Y., Hu, J., Anthony, E. J., 2019, Simultaneous removal of SO2 and NOx by a new combined spray-and-scattered-bubble technology based on preozonation: from lab scale to pilot scale, Applied Energy, 242, 1528-1538. https://doi.org/10.1016/j.apenergy.2019.03.186
  26. Sillman, S., and He, D., 2002, Some theoretical results concerning O3?NOx?VOC chemistry and NOx?VOC indicators, Journal of Geophysical Research, 107, 26-41.
  27. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, J. G. Powers, 2008, A description of the advanced research WRF version 3, NCAR Technical Note TN-475 STR, National Center for Atmospheric Research, 113.
  28. Wang, Y., Wang, H., Guo, H., Lyu, X., Cheng, H., Ling, Z., Louie, P. K. K., Simpson, I. J., Meinardi, S., Blake, D. R., 2017, Long-term O3-precursor relationships in Hong Kong: field observation and model simulation, Atmospheric Chemistry and Physics, 17, 10919-10935. https://doi.org/10.5194/acp-17-10919-2017
  29. Zhang, X., Fung, J. C. H., Lau, A. K. H.,, Hossain, M. S., Louie, P. K. K., Huang, W., 2020, Air quality and synergistic health effects of ozone and nitrogen oxides in response to China's integrated air quality control policies during 2015-2019, Chemosphere, 268, 129385.
  30. Zhou, H., Zhou, M. X., Liu, Z. H., Cheng, M., Chen, J. Z., 2016, Modeling NOx emission of coke combustion in iron ore sintering process and its experimental validation, Fuel, 179, 322-331. https://doi.org/10.1016/j.fuel.2016.03.098