DOI QR코드

DOI QR Code

Effect of the Composition of a Reduced Fuel on the Concentration Change of UCl3 in the Electrorefiner

금속전환체 조성의 전해정련 전해조 UCl3 농도변화에 대한 영향

  • Received : 2019.08.14
  • Accepted : 2019.09.23
  • Published : 2019.09.30

Abstract

The composition of the reduced fuel produced in the electrolytic reduction process of pyroprocessing affects the concentration change of $UCl_3$, an important operating variable of the electrorefining process. In this study, we examined the concentration change of $UCl_3$ in the electrorefiner according to the content of TRU and RE elements in the reduced fuel and the concentration of $Li_2O$ introduced in the electrorefiner accompanied with the reduced fuel. Considering only the TRU and RE elements, the concentration of $UCl_3$ decreased with increasing the number of electrorefining operation batch. In order to operate one campaign (20 batches) of electrorefining process, it was found that additional injection of $UCl_3$ should be conducted more than 3 times. On the other hand, the concentration of $UCl_3$ in the electrorefiner changed significantly depending on the concentration of $Li_2O$ and, accordingly the number of operable electrorefining batches decreased rapidly, showing that the concentration of $Li_2O$ is an important operating variable in electrorefining. Therefore, the results of this study show that to maintain the concentration of $UCl_3$ in the electrorefiner, the operation mode should be set by taking into account the effect of $Li_2O$ as well as the TRU and RE elements contained in the reduced fuel.

파이로프로세싱의 전해환원공정에서 생산된 금속전환체의 조성은 전해정련공정 운전의 중요한 운전변수인 용융염 중 $UCl_3$의 농도변화에 영향을 미친다. 따라서, 본 연구에서는 금속전환체에 함유된 TRU와 RE 원소의 함량 및 금속전환체에 동반되어 전해정련 전해조에 유입될 수 있는 $Li_2O$ 농도가 전해정련 전해조의 $UCl_3$ 농도 변화에 미치는 영향을 검토하였다. 금속전환체의 TRU 원소와 RE 원소의 농도만을 고려하였을 때 전해정련 운전 batch 수 증가에 따라 $UCl_3$ 농도가 감소하였다. 전해정련 1 campaign(20 batch)를 운전하기 위해서는 $UCl_3$를 3회 이상 추가 보충해야 함을 알 수 있었다. 한편, 금속전환체에 동반되어 전해정련 전해조에 유입되는 $Li_2O$의 유입량 증가에 따라 $UCl_3$ 농도 감소의 영향이 크게 나타났으며, 이에 따라 운전 가능 batch 수가 급격히 감소하게 되어 전해정련 운전에 중요한 운전 변수임을 보여주었다. 이러한 결과는 전해정련 운전 중 $UCl_3$ 농도 유지를 위해 금속전환체에 포함된 TRU 및 RE 원소뿐만 아니라 금속전환체에 동반되어 유입될 가능성이 있는 $Li_2O$의 영향도 고려하여 전해정련 운전모드를 설정하여야 함을 보여주었다.

Keywords

References

  1. K.C. Song, H. Lee, J.M. Hur, J.G. Kim, D.H. Ahn, and Y.Z. Cho,"Status of pyroprocessing development in Korea", Nucl. Eng. Technol., 42(2), 131-144 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  2. H. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E.H. Kim,"Pyroprocessing technology development at KAERI", Nucl. Eng. Technol., 43(4), 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  3. J.W. Lee, H. Lee, E.H. Kim, J.H. Lee, D. Vaden, B. Westphal, and M.F. Simpson, "Assessment of a U Product Purity from Pyroprocessing Spent EBR-II Fuel", J. Korean Radioactive Waste Soc., 7(3), 167-174 (2009).
  4. E.Y. Choi, M.K. Jeon, and J.M. Hur, "Reoxidation of uranium in electrolytically reduced simulated oxide fuel during residual salt distillation", J. Radioanal. Nucl. Chem., 314(1), 207-213 (2017). https://doi.org/10.1007/s10967-017-5404-x
  5. E.Y. Choi, M.K. Jeon, J. Lee, S.W. Kim, S.K. Lee, S.J. Lee, D.H. Heo, H.W. Kang, S.C. Jeon, and J.M. Hur, "Reoxidation of uranium metal immersed in a $Li_2O$-LiCl molten salt after electrolytic reduction of uranium oxide", J. Nucl. Mater., 485, 90-97 (2017). https://doi.org/10.1016/j.jnucmat.2016.12.017
  6. M.K. Jeon, T.S. Yoo, E.Y. Choi, and J.M. Hur, "Quantitave calculations on the reoxidation behavior of oxide reduction system for pyroprocessing", J. Radioanal. Nucl. Chem., 313(1), 155-159 (2017). https://doi.org/10.1007/s10967-017-5264-4
  7. I.S. Kim, D.Y. Chung, M.S. Park, J.M. Hur, and J.K. Moon, "Evaporation of CsCl, $BaCl_2$, and $SrCl_2$ from the LiCl-$Li_2O$ molten salt of the electrolytic reduction process", J. Radioanal. Nucl. Chem., 303(1), 223-227 (2015). https://doi.org/10.1007/s10967-014-3330-8
  8. I.S. Kim, S.C. Oh, H.S. Im, J.M. Hur, and H. Lee, "Distillation of LiCl from the LiCl-$Li_2O$ molten salt of the electrolytic reduction process", J. Radioanal. Nucl. Chem., 295(2), 1413-1417 (2013). https://doi.org/10.1007/s10967-012-1997-2
  9. E.Y. Choi, C.Y. Won, D.S. Kang, S.W. Kim, J.S. Cha, S.J. Lee, W. Park, H.S. Im, and J.M. Hur, "Production of uranium metal via electrolytic reduction of uranium oxide in molten LiCl and salt distillation", J. Radioanal. Nucl. Chem., 304(2), 535-546 (2015) https://doi.org/10.1007/s10967-014-3842-2
  10. H.W. Kang, E.Y. Choi, S.W. Kim, S.S. Hong, M.K. Jeon, S.K. Lee, S.C. Oh, W. Park, and J.M. Hur, "Distillation characteristics of LiCl-$Li_2O$ electrolyte for $UO_2$ electrolytic reduction process", J. Radioanal. Nucl. Chem., 310(3), 1165-1171 (2015).
  11. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carls, "Development of pyroprocessing technology", Progress. Nucl. Energy, 31(1), 131-140 (1997). https://doi.org/10.1016/0149-1970(96)00007-8
  12. H. Lee, G.I. Park, J.W. Lee, K.H. Kang, J.M. Hur, J.G. Kim, S. Paek, I.T. Kim, and I.J. Cho, "Current status of pyroprocessing development at KAERI", Sci. Technol. Nucl. Install., 2013, 1-11 (2013).
  13. S. Park, S.C. Hwang, S. J. Lee, and H. Lee, "Assessment of lab-scale high-throughput electro-refiner with respect to the anode surface area and $UCl_3$ concentration in LiCl-KCl eutectic salt", Global 2015, September 22, 2015, Paris, France.