DOI QR코드

DOI QR Code

The exploration of U(VI) concentration improvement in carbonate medium for alkaline reprocessing process

  • Chenxi Hou (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Mingjian He (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Meng Zhang (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Haofan Fang (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Hui He (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Caishan Jiao (College of Nuclear Science and Technology, Harbin Engineering University)
  • 투고 : 2023.04.19
  • 심사 : 2023.10.13
  • 발행 : 2024.02.25

초록

The purpose of this study is to improve the concentration of U(VI) in carbonate solution reasonably, which to improve the application potential of the alkaline reprocessing processes. The dissolution behavior of U3O8 in carbonate peroxide solutions was investigated under different conditions, including pH, carbonate concentration, and solid-liquid ratio. The results showed that the dissolution rate of U3O8 increased with the increase of pH from 8 to 11 in the mixed carbonate solution containing 0.5 mol/L H2O2. The role of carbonate ions in the dissolution of U3O8 was further elucidated by observing the dissolution of UO4⋅4H2O in carbonate solutions. Furthermore, the concentration of U(VI) in 3 mol/L Na2CO3 solution was successfully increased to 350 g/L under ultrasonic-assisted conditions at 60 ℃ and a solid-liquid ratio at 1/2 g/mL. Meanwhile, it is suggested that increasing the concentration of carbonate ions can improve the stability of the dissolved solution containing uranyl peroxycarbonate complex.

키워드

과제정보

We acknowledge financial support from the National Natural Science Foundation of China (U1967219).

참고문헌

  1. K.L. Nash, G.J. Lumetta, Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment, Woodhead Publishing, Oxford, 2011. 
  2. R. Taylor, K. Nash, M. Nilsson, C. Poinssot, B. Koppelman, Reprocessing and Recycling of Spent Nuclear Fuel, Nuclear Energy Encyclopedia: Science, Technology, and Applications, Woodhead Publishing, 2015. 
  3. C.Z. Soderquist, A.M. Johnsen, B.K. McNamara, B.D. Hanson, J.W. Chenault, K. J. Carson, S.M. Peper, Dissolution of irradiated commercial UO2 fuels in ammonium carbonate and hydrogen peroxide, Ind. Eng. Chem. Res. 50 (4) (2011) 1813-1818, https://doi.org/10.1021/ie101386n. 
  4. S.I. Stepanov, A.V. Boyarintsev, M.V. Vazhenkov, B.F. Myasoedov, E.O. Nazarov, A. M. Safiulina, I.G. Tananaev, H.V. So, A.M. Chekmarev, A.Y. Civadze, CARBEX Process, a new technology of reprocessing of spent nuclear fuel, Russ. J. Gen. Chem. 81 (9) (2011) 1949-1959, https://doi.org/10.1134/S1070363211090404. 
  5. A.V. Boyarintsev, S.I. Stepanov, G.V. Kostikova, V.I. Zhilov, A.M. Chekmarev, A. Y. Tsivadze, Reprocessing of simulated voloxidized uranium-oxide SNF in the CARBEX process, Nucl. Eng. Technol. 51 (7) (2019) 1799-1804, https://doi.org/10.1016/j.net.2019.05.020. 
  6. C. Soderquist, B. Hanson, Dissolution of spent nuclear fuel in carbonate-peroxide solution, J. Nucl. Mater. 396 (2-3) (2010) 159-162, https://doi.org/10.1016/j.jnucmat.2009.11.001. 
  7. K.W. Kim, D.Y. Chung, H.B. Yang, J.K. Lim, E.H. Lee, K.C. Song, K. Song, A conceptual process study for recovery of uranium alone from spent nuclear fuel by using high-alkaline carbonate media, Nucl. Technol. 166 (2) (2009) 170-179, 10.13182/Nt09-A7403. 
  8. N. Asanuma, M. Harada, Y. Ikeda, H. Tomiyasu, New approach to the nuclear fuel reprocessing in non-acidic aqueous solutions, J. Nucl. Sci. Technol. 38 (10) (2001) 866-871, https://doi.org/10.3327/jnst.38.866. 
  9. S.I. Stepanov, A.V. Boyarintsev, Reprocessing of spent nuclear fuel in carbonate media: problems, achievements, and prospects, Nucl. Eng. Technol. 54 (7) (2022) 2339-2358, https://doi.org/10.1016/j.net.2022.01.009. 
  10. E.H. Lee, J.K. Lim, D.Y. Chung, H.B. Yang, J.H. Yoo, K.W. Kim, The oxidative-dissolution behaviors of fission products in a Na2CO3-H2O2 solution, J. Radioanal. Nucl. Chem. 281 (3) (2009) 339, https://doi.org/10.1007/s10967-009-0018-6. 
  11. S.C. Smith, S.M. Peper, M. Douglas, K.L. Ziegelgruber, E.C. Finn, Dissolution of uranium oxides under alkaline oxidizing conditions, J. Radioanal. Nucl. Chem. 282 (2) (2009) 617-621, https://doi.org/10.1007/s10967-009-0182-8. 
  12. J.C. Wren, D.W. Shoesmith, S. Sunder, Corrosion behavior of uranium dioxide in alpha radiolytically decomposed water, J. Electrochem. Soc. 152 (11) (2005) B470, https://doi.org/10.1149/1.2047349. 
  13. D.Y. Chung, H.S. Seo, J.W. Lee, H.B. Yang, E.H. Lee, K.W. Kim, Oxidative leaching of uranium from SIMFUEL using Na2CO3-H2O2 solution, J. Radioanal. Nucl. Chem. 284 (1) (2010) 123-129, https://doi.org/10.1007/s10967-009-0443-6. 
  14. C. Hou, M. He, C. Li, M. Zhang, C. Jiao, H. He, The oxidation dissolution of uranium oxides in carbonate-peroxide aqueous solution, J. Radioanal. Nucl. Chem. (2023), https://doi.org/10.1007/s10967-022-08652-z. 
  15. A.M. Chekmarev, A.V. Boyarintsev, S.I. Stepanov, A.Y. Tsivadze, Physicochemical principles of preparation of U(VI) carbonate solutions for extraction reprocessing in the CARBEX process, Radiochemistry+. 59 (4) (2017) 345-350, https://doi.org/10.1134/S106636221704004x. 
  16. G.S. Goff, L.F. Brodnax, M.R. Cisneros, S.M. Peper, S.E. Field, B.L. Scoft, W. H. Runde, First identification and thermodynamic characterization of the ternary U (VI) species, UO2O2(CO3)24-, in UO2-H2O2-K2CO3 solutions, Inorg. Chem. 47 (6) (2008) 1984-1990, https://doi.org/10.1021/ic701775g. 
  17. K.W. Kim, K.Y. Lee, D.Y. Chung, E.H. Lee, J.K. Moon, D.W. Shin, Evaluation of the stability of uranyl peroxo-carbonato complex ions in carbonate media at different temperatures, J. Hazard Mater. 233 (2012) 213-218, https://doi.org/10.1016/j.jhazmat.2012.07.018. 
  18. F. Clarens, J. de Pablo, I. Casas, J. Gimenez, M. Rovira, J. Merino, E. Cera, J. Bruno, J. Quinones, A. Martinez-Esparza, The oxidative dissolution of unirradiated UO2 by hydrogen peroxide as a function of pH, J. Nucl. Mater. 345 (2-3) (2005) 225-231, https://doi.org/10.1016/j.jnucmat.2005.06.002. 
  19. K.W. Kim, Y.H. Kim, S.Y. Lee, J.W. Lee, K.S. Joe, E.H. Lee, J.S. Kim, K. Song, K. C. Song, Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide, Environ. Sci. Technol. 43 (7) (2009) 2355-2361, https://doi.org/10.1021/es802951b.
  20. S.I. Stepanov, A.V. Boyarintsev, A.M. Chekmarev, Physicochemical foundations of spent nuclear fuel leaching in carbonate solutions, Dokl. Chem. 427 (2009) 202-206, https://doi.org/10.1134/S0012500809080060. 
  21. C. Hou, M. He, H. Fang, M. Zhang, Y. Gao, C. Jiao, H. He, Ultrasonic-assisted dissolution of U3O8 in carbonate medium, Nucl. Eng. Technol. 55 (1) (2023) 63-70, https://doi.org/10.1016/j.net.2022.09.025. 
  22. C. Hou, H. He, J. Sun, B. Yang, H. Fang, C. Jiao, M. He, Dissolution of uranium dioxide powder in carbonate-peroxide solution, J. Radioanal. Nucl. Chem. (2022), https://doi.org/10.1007/s10967-022-08263-8. 
  23. K.W. Kim, E.C. Jung, K.Y. Lee, H.R. Cho, E.H. Lee, D.Y. Chung, Evaluation of the behavior of uranium peroxocarbonate complexes in Na-U(VI)-CO3-OH-H2O2 solutions by Raman spectroscopy, J. Phys. Chem. A 116 (49) (2012) 12024-12031, https://doi.org/10.1021/jp307062u. 
  24. K.W. Kim, J.T. Hyun, K.Y. Lee, E.H. Lee, K.W. Lee, K.C. Song, J.K. Moon, Effects of the different conditions of uranyl and hydrogen peroxide solutions on the behavior of the uranium peroxide precipitation, J. Hazard Mater. 193 (2011) 52-58, https://doi.org/10.1016/j.jhazmat.2011.07.032. 
  25. P.L. Zanonato, P. Di Bernardo, Z. Szabo, ' I. Grenthe, Chemical equilibria in the uranyl(VI)-peroxide-carbonate system; identification of precursors for the formation of poly-peroxometallates, Dalton Trans. 41 (38) (2012) 11635-11641, https://doi.org/10.1039/C2DT31282D. 
  26. P.L. Zanonato, Z. Szabo, ' V. Vallet, P. Di Bernardo, I. Grenthe, Alkali-metal ion coordination in uranyl(VI) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li+-, Na+- and K+-uranyl(VI)-peroxide-carbonate systems, Dalton Trans. 44 (37) (2015) 16565-16572, https://doi.org/10.1039/C5DT01710F. 
  27. J. Qiu, P.C. Burns, Clusters of actinides with oxide, peroxide, or hydroxide bridges, Chem. Rev. 113 (2) (2013) 1097-1120, https://doi.org/10.1021/cr300159x. 
  28. M. Sharifironizi, J.E.S. Szymanowski, J. Qiu, S. Castillo, S. Hickam, P.C. Burns, Charge density influence on enthalpy of formation of uranyl peroxide cage cluster salts, Inorg. Chem. 57 (18) (2018) 11456-11462, https://doi.org/10.1021/acs.inorgchem.8b01300.